【題目】如圖,在矩形ABCD中,AB= ,E是BC的中點(diǎn),AE⊥BD于點(diǎn)F,則CF的長(zhǎng)是

【答案】
【解析】解:∵四邊形ABCD是矩形, ∴∠ABE=∠BAD=90°,
∵AE⊥BD,
∴∠AFB=90°,
∴∠BAF+∠ABD=∠ABD+∠ADB=90°,
∴∠BAE=∠ADB,
∴△ABE∽△ADB,

∵E是BC的中點(diǎn),
∴AD=2BE,
∴2BE2=AB2=2,
∴BE=1,
∴BC=2,
∴AE= = ,BD= = ,
∴BF= = ,
過(guò)F作FG⊥BC于G,
∴FG∥CD,
∴△BFG∽△BDC,
= = ,
∴FG= ,BG= ,
∴CG=
∴CF= =
所以答案是:

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解矩形的性質(zhì)的相關(guān)知識(shí),掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD平分∠BAC,AD⊥BD,垂足為點(diǎn)D,DE∥AC. 求證:△BDE是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分線交AE于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)B,交BC于另一點(diǎn)F.
(1)求證:CD與⊙O相切;
(2)若BF=24,OE=5,求tan∠ABC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別在BC,CD上,且∠EAF=45°,將△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,使點(diǎn)E落在點(diǎn)E'處,則下列判斷不正確的是(
A.△AEE′是等腰直角三角形
B.AF垂直平分EE'
C.△E′EC∽△AFD
D.△AE′F是等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中 過(guò)點(diǎn)A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點(diǎn),且∠AFE=∠D.
(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD= ,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九 (1)班48名學(xué)生參加學(xué)校舉行的“珍惜生命,遠(yuǎn)離毒品”只是競(jìng)賽初賽,賽后,班長(zhǎng)對(duì)成績(jī)進(jìn)行分析,制作如下的頻數(shù)分布表和頻數(shù)分布直方圖(未完成).余下8名學(xué)生成績(jī)尚未統(tǒng)計(jì),這8名學(xué)生成績(jī)?nèi)缦拢?0,90,63,99,67,99,99,68. 頻數(shù)分布表

分?jǐn)?shù)段

頻數(shù)(人數(shù))

60≤x<70

a

70≤x<80

16

80≤x<90

24

90≤x<100

b


請(qǐng)解答下列問(wèn)題:
(1)完成頻數(shù)分布表,a= , b=
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)全校共有600名學(xué)生參加初賽,估計(jì)該校成績(jī)90≤x<100范圍內(nèi)的學(xué)生有多少人?
(4)九 (1)班甲、乙、丙三位同學(xué)的成績(jī)并列第一,現(xiàn)選兩人參加決賽,求恰好選中甲、乙兩位同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)在它的娛樂(lè)性節(jié)目中每期抽出兩名場(chǎng)外幸運(yùn)觀眾,有一期甲、乙兩人被抽為場(chǎng)外幸運(yùn)觀眾,他們獲得了一次抽獎(jiǎng)的機(jī)會(huì),在如圖所示的翻獎(jiǎng)牌的正面4個(gè)數(shù)字中任選一個(gè),選中后翻開,可以得到該數(shù)字反面的獎(jiǎng)品,第一個(gè)人選中的數(shù)字第二個(gè)人不能再選擇了.
(1)如果甲先抽獎(jiǎng),那么甲獲得“手機(jī)”的概率是多少?
(2)小亮同學(xué)說(shuō):甲先抽獎(jiǎng),乙后抽獎(jiǎng),甲、乙兩人獲得“手機(jī)”的概率不同,且甲獲得“手機(jī)”的概率更大些.你同意小亮同學(xué)的說(shuō)法嗎?為什么?請(qǐng)用列表或畫樹狀圖分析.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC內(nèi)接于⊙O,點(diǎn)C在劣弧AB上(不與點(diǎn)A,B重合),點(diǎn)D為弦BC的中點(diǎn),DE⊥BC,DE與AC的延長(zhǎng)線交于點(diǎn)E,射線AO與射線EB交于點(diǎn)F,與⊙O交于點(diǎn)G,設(shè)∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,

(1)點(diǎn)點(diǎn)同學(xué)通過(guò)畫圖和測(cè)量得到以下近似數(shù)據(jù):

ɑ

30°

40°

50°

60°

β

120°

130°

140°

150°

γ

150°

140°

130°

120°

猜想:β關(guān)于ɑ的函數(shù)表達(dá)式,γ關(guān)于ɑ的函數(shù)表達(dá)式,并給出證明:
(2)若γ=135°,CD=3,△ABE的面積為△ABC的面積的4倍,求⊙O半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需繞行B地,已知B地位于A地北偏東67°方向,距離A地520km,C地位于B地南偏東30°方向,若打通穿山隧道,建成兩地直達(dá)高鐵,求A地到C地之間高鐵線路的長(zhǎng).(結(jié)果保留整數(shù))
(參考數(shù)據(jù):sin67°≈ ,cos67°≈ ,tan67°≈ ≈1.73)

查看答案和解析>>

同步練習(xí)冊(cè)答案