【題目】如圖,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分線交AE于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過點(diǎn)B,交BC于另一點(diǎn)F.
(1)求證:CD與⊙O相切;
(2)若BF=24,OE=5,求tan∠ABC的值.

【答案】
(1)解:過點(diǎn)O作OG⊥DC,垂足為G.

∵AD∥BC,AE⊥BC于E,

∴OA⊥AD.

∴∠OAD=∠OGD=90°.

在△ADO和△GDO中 ,

∴△ADO≌△GDO.

∴OA=OG.

∴DC是⊙O的切線


(2)解:如圖所示:連接OF.

∵OA⊥BC,

∴BE=EF= BF=12.

在Rt△OEF中,OE=5,EF=12,

∴OF= =13.

∴AE=OA+OE=13+5=18.

∴tan∠ABC= =


【解析】(1)過點(diǎn)O作OG⊥DC,垂足為G.先證明∠OAD=90°,從而得到∠OAD=∠OGD=90°,然后利用AAS可證明△ADO≌△GDO,則OA=OG=r,則DC是⊙O的切線;(2)連接OF,依據(jù)垂徑定理可知BE=EF=12,在Rt△OEF中,依據(jù)勾股定理可知求得OF=13,然后可得到AE的長,最后在Rt△ABE中,利用銳角三角函數(shù)的定義求解即可.
【考點(diǎn)精析】關(guān)于本題考查的梯形的定義和解直角三角形,需要了解一組對邊平行,另一組對邊不平行的四邊形是梯形.兩腰相等的梯形是等腰梯形;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:( 1+2cos30°﹣| ﹣1|+(﹣1)2017

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題
(1)計(jì)算:|2﹣ |﹣ )+
(2)先化簡,再求值: ÷ + ,其中x=﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)D,E分別在AC,BC上(點(diǎn)D與點(diǎn)A,C不重合),且∠DEC=∠A,將△DCE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到△DC′E′.當(dāng)△DC′E′的斜邊、直角邊與AB分別相交于點(diǎn)P,Q(點(diǎn)P與點(diǎn)Q不重合)時(shí),設(shè)CD=x,PQ=y.
(1)求證:∠ADP=∠DEC;
(2)求y關(guān)于x的函數(shù)解析式,并直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,順次連接腰長為2的等腰直角三角形各邊中點(diǎn)得到第1個(gè)小三角形,再順次連接所得的小三角形各邊中點(diǎn)得到第2個(gè)小三角形,如此操作下去,則第n個(gè)小三角形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個(gè)動(dòng)點(diǎn),且AE=FD,連接BE、CF、BD,CF與BD交于點(diǎn)G,連接AG交BE于點(diǎn)H,連接DH,下列結(jié)論正確的個(gè)數(shù)是( ) ①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤線段DH的最小值是2 ﹣2.

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,對角線AC、BD交于點(diǎn)O.若四邊形ABCD是正方形如圖1:則有AC=BD,AC⊥BD. 旋轉(zhuǎn)圖1中的Rt△COD到圖2所示的位置,AC′與BD′有什么關(guān)系?(直接寫出)
若四邊形ABCD是菱形,∠ABC=60°,旋轉(zhuǎn)Rt△COD至圖3所示的位置,AC′與BD′又有什么關(guān)系?寫出結(jié)論并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB= ,E是BC的中點(diǎn),AE⊥BD于點(diǎn)F,則CF的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,CD平分∠ACB交⊙O于D,過點(diǎn)D作PQ∥AB分別交CA、CB延長線于P、Q,連接BD.
(1)求證:PQ是⊙O的切線;
(2)求證:BD2=ACBQ;
(3)若AC、BQ的長是關(guān)于x的方程x+ =m的兩實(shí)根,且tan∠PCD= ,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案