【題目】如圖,順次連接腰長為2的等腰直角三角形各邊中點(diǎn)得到第1個小三角形,再順次連接所得的小三角形各邊中點(diǎn)得到第2個小三角形,如此操作下去,則第n個小三角形的面積為

【答案】
【解析】解:記原來三角形的面積為s,第一個小三角形的面積為s1 , 第二個小三角形的面積為s2 , …, ∵s1= s= s,
s2= s= s,
s3= s,
∴sn= s= 22= ,
所以答案是
【考點(diǎn)精析】通過靈活運(yùn)用等腰直角三角形和三角形中位線定理,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知平行四邊形ABCD頂點(diǎn)A的坐標(biāo)為(2,6),點(diǎn)B在y軸上,且AD∥BC∥x軸,過B,C,D三點(diǎn)的拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(2,2),點(diǎn)F(m,6)是線段AD上一動點(diǎn),直線OF交BC于點(diǎn)E.

(1)求拋物線的表達(dá)式;
(2)設(shè)四邊形ABEF的面積為S,請求出S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)如圖2,過點(diǎn)F作FM⊥x軸,垂足為M,交直線AC于P,過點(diǎn)P作PN⊥y軸,垂足為N,連接MN,直線AC分別交x軸,y軸于點(diǎn)H,G,試求線段MN的最小值,并直接寫出此時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y= 的大致圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,BE⊥AC,垂足E在CA的延長線上,DF⊥AC,垂足F在AC的延長線上,求證:AE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c的開口向上,且經(jīng)過點(diǎn)A(0,
(1)若此拋物線經(jīng)過點(diǎn)B(2,﹣ ),且與x軸相交于點(diǎn)E,F(xiàn).
①填空:b=(用含a的代數(shù)式表示);
(2)若a= ,當(dāng)0<x<1,拋物線上的點(diǎn)到x軸距離的最大值為3時,求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分線交AE于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過點(diǎn)B,交BC于另一點(diǎn)F.
(1)求證:CD與⊙O相切;
(2)若BF=24,OE=5,求tan∠ABC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=12,AC= ,∠B=30°,則△ABC的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中 過點(diǎn)A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點(diǎn),且∠AFE=∠D.
(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD= ,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家規(guī)定,中、小學(xué)生每天在校體育活動時間不低于1h.為此,某區(qū)就“你每天在校體育活動時間是多少”的問題隨機(jī)調(diào)查了轄區(qū)內(nèi)300名初中學(xué)生.根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計(jì)圖如圖所示,其中A組為t<0.5h,B組為0.5h≤t<1h,C組為1h≤t<1.5h,D組為t≥1.5h.
請根據(jù)上述信息解答下列問題:

(1)本次調(diào)查數(shù)據(jù)的眾數(shù)落在組內(nèi),中位數(shù)落在組內(nèi);
(2)該轄區(qū)約有18000名初中學(xué)生,請你估計(jì)其中達(dá)到國家規(guī)定體育活動時間的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案