【題目】探究函數(shù)的圖象與性質(zhì),下面是探究過程,請補充完整:

)下表是的幾組對應值.

函數(shù)的自變量的取值范圍是__________, 的值為__________.

)描出以上表中各對對應值為坐標的點,并畫出該函數(shù)的大致圖象

)進一步探究函數(shù)圖象發(fā)現(xiàn):

函數(shù)圖象與軸有__________個交點,所以對應方程有__________個實數(shù)根.

方程有__________個實數(shù)根.

結合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì)__________.

【答案】 ;(圖象見解析; ;③函數(shù)沒有最大值或函數(shù)沒有最小值或函數(shù)圖像沒有經(jīng)過第四象限(答案不唯一).

【解析】試題分析:1)根據(jù)分式的分母不為零確定出自變量x的取值范圍為x≠1,把x=3代入函數(shù)的解析式求得m= ;(2在坐標系中描出根據(jù)表中各對對應值為坐標的點,連接畫出函數(shù)圖象即可;(3)①觀察圖象即可得:函數(shù)圖象與軸有1個交點,所以對應方程有1個實數(shù)根;②觀察圖象即可得方程有3個實數(shù)根;③根據(jù)函數(shù)圖象寫出該函數(shù)的一條性質(zhì)即可,答案不唯一,正確即可.

試題解析:

)由題意可得, ,故答案為

)如圖所示.

③函數(shù)沒有最大值或函數(shù)沒有最小值或函數(shù)圖像沒有經(jīng)過第四象限(答案不唯一).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了解社區(qū)居民最喜歡的支付方式,某興趣小組對龍湖社區(qū)內(nèi)20~60歲年齡段的部分居民展開了隨機問卷調(diào)查(每人只能選擇其中一項),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息解答下列問題:

1)求參與問卷調(diào)查的總人數(shù).

2)補全條形統(tǒng)計圖.

3)該社區(qū)中20~60歲的居民約4000人,估算這些人中最喜歡微信支付方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ADABC的中線,AEAB,AFAC,且AE=AB,AF=ACAD=3,AB=4

1)求AC長度的取值范圍;

2)求EF的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點AB的坐標分別是(0,8),(60),連接AB,將AOB沿過點B的直線折疊,使點A落在x軸上的點A'處,折痕所在直線交y軸正半軸于點C

1)求直線BC的函數(shù)表達式;

2)把直線BC向左平移,使之經(jīng)過點A',求平移后直線的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADABC的角平分線,DEAB于點EDFAC于點F,連接EFAD于點G

1)求證:AD垂直平分EF;

2)若BAC=60°,猜測DGAG間有何數(shù)量關系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,有一塊長為米、寬為米的長方形空地,現(xiàn)計劃將這塊空地四周均留出2米寬修道路,中間用來綠化.

1)求綠化的面積(用含、的代數(shù)式表示).

2)若長方形空地的面積為5762,周長為120米,求綠化的面積.

3)若在圖①的綠化部分再修一條2米寬道路,如圖②,求綠化的面積(用含、的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請你畫出一個以BC為底邊的等腰ΔABC,使底邊上的高AD=BC

1)求tanBsinB的值;

2)在你所畫的等腰ΔABC中設底邊BC=5米,求腰上的高BE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用4個長7厘米、寬2厘米的長方形拼成一個大長方形(如圖,左下角和右上角重疊),大長方形的周長是多少厘米?圖中陰影部分的面積是多少平方厘米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某體育用品商場預測某品牌運動服能夠暢銷,就用32000元購進了一批這種運動服,上市后很快脫銷,商場又用68000元購進第二批這種運動服,所購數(shù)量是第一批購進數(shù)量的2倍,但每套進價多了10元.

1)該商場兩次共購進這種運動服多少套?

2)如果這兩批運動服每套的售價相同,且全部售完后總利潤不低于20%,那么每套售價至少是多少元?

查看答案和解析>>

同步練習冊答案