【題目】如圖,ADABC的角平分線,DEAB于點(diǎn)E,DFAC于點(diǎn)F,連接EFAD于點(diǎn)G

1)求證:AD垂直平分EF;

2)若BAC=60°,猜測(cè)DGAG間有何數(shù)量關(guān)系?請(qǐng)說明理由.

【答案】(1)、證明過程見解析;(2)、AG=3DG,證明過程見解析

【解析】

試題分析:(1)、根據(jù)角平分線的性質(zhì)得出DE=DF,AED=AFD=90°,從而得出DEF=DFE,則AEF=AFE,從而說明AE=AF,即點(diǎn)A、D都在EF的垂直平分線上,得出答案;(2)、根據(jù)BAC=60°,AD平分BAC得出AD=2DE,根據(jù)EGD=90°,DEG=30°得出DE=2DG,從而說明AD=4DG,即AG=3DG.

試題解析:(1)ADABC的角平分線,DEAB,DFAC, DE=DF,AED=AFD=90°

∴∠DEF=DFE,∴∠AEF=AFEAE=AF 點(diǎn)A、D都在EF的垂直平分線上,

AD垂直平分EF

(2)、AG=3DG

∵∠BAC=60°,AD平分BAC, ∴∠EAD=30°,AD=2DE,EDA=60°

ADEF,∴∠EGD=90°,∴∠DEG=30° DE=2DGAD=4DG, AG=3DG

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是ABC的邊AC上任意一點(diǎn),ABC經(jīng)過平移后得到A1B1C1,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P1(a+6,b﹣2).

(1)平移后的三個(gè)頂點(diǎn)坐標(biāo)分別為:.A1( ),B1( ),C1( ).

(2)在上圖中畫出平移后三角形A1B1C1;

(3)畫出AOA1并求出AOA1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明、小亮、小芳和兩個(gè)陌生人甲、乙同在如圖所示的地下車庫等電梯,已知兩個(gè)陌生人到1至4層的任意一層出電梯,并設(shè)甲在a層出電梯,乙在b層出電梯.
(1)請(qǐng)你用畫樹狀圖或列表法求出甲、乙二人在同一層樓出電梯的概率;
(2)小亮和小芳打賭說:“若甲、乙在同一層或相鄰樓層出電梯,則小亮勝,否則小芳勝”.該游戲是否公平?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個(gè)動(dòng)點(diǎn),且滿足∠PAB=∠PBC,則線段CP長(zhǎng)的最小值為(
A.
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△COD是△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)40°后得到的圖形,若點(diǎn)C恰好落在AB上,且∠AOD的度數(shù)為90°,則∠B的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的頂點(diǎn)A、B、C都在小正方形的頂點(diǎn)上,像△ABC這樣的三角形叫格點(diǎn)三角形,試在方格紙上按下列要求畫格點(diǎn)三角形:

(1)將△ABC先向下平移4個(gè)單位,再向右平移2個(gè)單位得到△A1B1C1;(A1、B1、C1的對(duì)應(yīng)點(diǎn)分別為A、B、C)

(2)線段AC與A1C1的關(guān)系 ;

(3)AB邊上的中線CD和高線CE;(利用網(wǎng)格點(diǎn)和直尺畫圖)

(4)連接CC1,則∠BCC1 °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形一腰上的高與另一腰的夾角是50,則這個(gè)三角形的底角是( )

A. 70 B. 20 C. 70或20 D. 40或140

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家的房前有一塊矩形的空地,空地上有三棵樹A、B、C,小明想建一個(gè)圓形花壇,使三棵樹都在花壇的邊上.

(1)請(qǐng)你幫小明把花壇的位置畫出來(尺規(guī)作圖,不寫作法,保留作圖痕跡).
(2)在△ABC中,AC=4米,∠ABC=45°,試求小明家圓形花壇的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD⊥BCCE⊥AB,AE=CE.求證:

1△AEF≌△CEB;

2AF=2CD

查看答案和解析>>

同步練習(xí)冊(cè)答案