【題目】如圖,平面直角坐標(biāo)系中,已知點A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的邊AC上任意一點,△ABC經(jīng)過平移后得到△A1B1C1,點P的對應(yīng)點為P1(a+6,b﹣2).
(1)平移后的三個頂點坐標(biāo)分別為:.A1( ),B1( ),C1( ).
(2)在上圖中畫出平移后三角形A1B1C1;
(3)畫出△AOA1并求出△AOA1的面積.
【答案】(1)A1 (3,1)B1 (1,-1)C1(4,﹣2);(2)見解析;(3)6.
【解析】分析:(1)根據(jù)點P、P1的坐標(biāo)確定出平移規(guī)律,再求出A1、B1、C1的坐標(biāo)即可;
(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C平移后的對應(yīng)點A1、B1、C1的位置,然后順次連接即可;
(3)利用△AOA1所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解.
詳解:(1)∵點P(a,b)的對應(yīng)點為P1(a+6,b﹣2),∴平移規(guī)律為向右6個單位,向下2個單位,∴A(﹣3,3),B(﹣5,1),C(﹣2,0)的對應(yīng)點的坐標(biāo)為A1(3,1),B1(1,﹣1),C1(4,﹣2);
(2)△A1B1C1如圖所示;
(3)△AOA1的面積=6×3﹣×3×3﹣×3×1﹣×6×2=18﹣﹣﹣6=18﹣12=6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點P(﹣x2﹣1,﹣2)所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,BD是對角線,AE⊥BD于點E,CF⊥BD于點F,試判斷四邊形AECF是不是平行四邊形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解題:
定義:如果一個數(shù)的平方等于-1,記為,這個數(shù)叫做虛數(shù)單位。那么和我們所學(xué)的實數(shù)對應(yīng)起來就叫做復(fù)數(shù),表示為(, 為實數(shù)),叫這個復(fù)數(shù)的實部, 叫做這個復(fù)數(shù)的虛部,它的加,減,乘法運算與整式的加,減,乘法運算類似。
例如計算:
(1)填空: =_________, =____________;
(2)計算: ;
(3)計算:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請把下面證明過程補充完整:
已知:如圖,∠ADC=∠ABC,BE、DF分別平分∠ABC、∠ADC,且∠1=∠2.
求證:∠A=∠C.
證明:∵BE、DF分別平分∠ABC、∠ADC(已知),
∴∠1=∠ABC,∠3=∠ADC(角平分線定義).
∵∠ABC=∠ADC(已知),
∴∠1=∠3(等量代換),
∵∠1=∠2(已知),
∴∠2=∠3(等量代換).
∴_____∥_____ (___ __).
∴∠A+∠_____=180°,∠C+∠_____=180°(___ __).
∴∠A=∠C(___ __).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場要經(jīng)營一種新上市的文具,進價為20元/件.試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是25元時,每天的銷售量為250件;銷售單價每上漲1元,每天的銷售量就減少10件.
(1)寫出商場銷售這種文具,每天所得的銷售利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;
(3)商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案: 方案A:該文具的銷售單價高于進價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元
請比較哪種方案的最大利潤更高,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).
小明的解題思路是:如圖2,過P作PE∥AB,通過平行線性質(zhì),可得∠APC=50°+60°=110°.
問題遷移:
(1)如圖3,AD∥BC,點P在射線OM上運動,當(dāng)點P在A、B兩點之間運動時,∠ADP=∠α,∠BCP=∠β.試判斷∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請說明理由;
(2)在(1)的條件下,如果點P在A、B兩點外側(cè)運動時(點P與點A、B、O三點不重合),請你直接寫出∠CPD、∠α、∠β間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx的圖像如圖,若一元二次方程ax2+bx+m=0有實數(shù)根,則m的最大值為( )
A.﹣3
B.3
C.﹣6
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為△ABC的角平分線,DE⊥AB于點E,DF⊥AC于點F,連接EF交AD于點G.
(1)求證:AD垂直平分EF;
(2)若∠BAC=60°,猜測DG與AG間有何數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com