【題目】(1)n邊形(n3)其中一個(gè)頂點(diǎn)的對(duì)角線有_____條;

(2)一個(gè)凸多邊形共有14條對(duì)角線,它是幾邊形?

(3)是否存在有21條對(duì)角線的凸多邊形?如果存在,它是幾邊形?如果不存在,說明理由.

【答案】(1)(n-3);(2) 七邊形.(3) 不存在.

【解析】試題分析:1)根據(jù)n邊形從一個(gè)頂點(diǎn)出發(fā)可引出(n-3)條對(duì)角線即可求解;

2)根據(jù)任意凸n邊形的對(duì)角線有條,即可解答;

3)不存在,根據(jù)=18,解得:n=,n不為正整數(shù)所以不存在.

試題解析:(1) n邊形過每一個(gè)頂點(diǎn)的對(duì)角線有(n3),

故答案為:(n3);

(2)設(shè)這個(gè)凸多邊形是n邊形,由題意,=14.

解得n1=7,n2=-4(不合題意,舍去).

這個(gè)凸多邊形是七邊形.

(3)不存在.

理由假設(shè)存在n邊形有21條對(duì)角線.由題意=21.解得n=.

因?yàn)槎噙呅蔚倪厰?shù)為正整數(shù),但不是正整數(shù),故不合題意.

所以不存在有21條對(duì)角線的凸多邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦書香校園讀書活動(dòng),經(jīng)過對(duì)八年級(jí)(1)班的42個(gè)學(xué)生的每人讀書數(shù)量進(jìn)行統(tǒng)計(jì)分析,得到條形統(tǒng)計(jì)圖如圖所示:

1)填空:該班每個(gè)學(xué)生讀書數(shù)量的眾數(shù)是 本,中位數(shù)是 本;

2)若把條形統(tǒng)計(jì)圖轉(zhuǎn)換為扇形統(tǒng)計(jì)圖,求該班學(xué)生讀書數(shù)量為4本的人數(shù)所對(duì)應(yīng)扇形的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲組的4名工人3月份完成的總工作量比此月人均定額的4倍多20件,乙組的5名工人3月份完成的總工作量比此月人均定額的6倍少20件.

1)如果兩組工人實(shí)際完成的此月人均工作量相等,那么此月人均定額是多少件?

2)如果甲組工人實(shí)際完成的此月人均工作量比乙組的多2件,則此月人均定額是多少件?

3)如果甲組工人實(shí)際完成的此月人均工作量比乙組的少2件,則此月人均定額是多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店在一周的銷售中,盈虧情況如下表(盈余為正,單位:元):

星期一

星期二

星期三

星期四

星期五

星期六

星期日

合計(jì)

-27.8

-70.3

200

138.1

-8

188

458

表中星期六的盈虧數(shù)被墨水涂污了,請(qǐng)你通過計(jì)算說明星期六的盈虧情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,AD⊥BC于點(diǎn)D,AM是△ABC的外角∠CAE的平分線.

(1)求證:AM∥BC;

(2)若DN平分∠ADC交AM于點(diǎn)N,判斷△ADN的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,有下列結(jié)論:abc0a+cb;3a+c0a+bmam+b)(其中m≠1),其中正確的結(jié)論有______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線過點(diǎn)A3,0),B2,3),C0,3),其頂點(diǎn)為D

1)求拋物線的解析式;

2)設(shè)點(diǎn)M1m),當(dāng)MB+MD的值最小時(shí),求m的值;

3)若P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),求APC的面積的最大值;

4)若拋物線的對(duì)稱軸與直線AC相交于點(diǎn)N,E為直線AC上任意一點(diǎn),過點(diǎn)EEFND交拋物線于點(diǎn)F,以ND,E,F為頂點(diǎn)的四邊形能否為平行四邊形?若能,求點(diǎn)E的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(a2b+2abb3÷b﹣(a+b)(ab).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線a≠0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OA=2,OB=8OC=6

1)求拋物線的解析式;

2)點(diǎn)MA點(diǎn)出發(fā),在線段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)NB出發(fā),在線段BC上以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),當(dāng)MBN存在時(shí),求運(yùn)動(dòng)多少秒使MBN的面積最大,最大面積是多少?

3)在(2)的條件下,MBN面積最大時(shí),在BC上方的拋物線上是否存在點(diǎn)P,使BPC的面積是MBN面積的9倍?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案