【題目】如圖,ABCD中,ABx軸,AB6.點(diǎn)A的坐標(biāo)為(1,﹣4),點(diǎn)D的坐標(biāo)為(﹣3,4),點(diǎn)B在第四象限,點(diǎn)GADy軸的交點(diǎn),點(diǎn)PCD邊上不與點(diǎn)CD重合的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Py軸的平行線PM,過(guò)點(diǎn)Gx軸的平行線GM,它們相交于點(diǎn)M,將△PGM沿直線PG翻折,當(dāng)點(diǎn)M的對(duì)應(yīng)點(diǎn)落在坐標(biāo)軸上時(shí),點(diǎn)P的坐標(biāo)為______

【答案】(﹣,4)或(,4

【解析】

先求出點(diǎn)G坐標(biāo),由勾股定理可求M'N的長(zhǎng),再由勾股定理可求m的值,即可求解.

解:∵點(diǎn)A的坐標(biāo)為(1,﹣4),點(diǎn)D的坐標(biāo)為(﹣3,4),

∴直線AD解析式為:y=﹣2x2,

∴點(diǎn)G0,﹣2),

如圖1中,當(dāng)點(diǎn)P在線段CD上時(shí),設(shè)Pm,4).

RtPNM′中,∵PMPM′6,PN4

NM′2,

RtOGM′中,∵OG2+OM′2GM′2,

22+2+m2m2,

解得m=﹣,

P(﹣4

根據(jù)對(duì)稱(chēng)性可知,P,4)也滿足條件.

故答案為:(﹣,4)或(,4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,且ABAC,點(diǎn)D⊙O上,AD⊥AB于點(diǎn)A, AD BC交于點(diǎn)E,FDA的延長(zhǎng)線上,且AFAE

(1)求證:BF⊙O的切線;

(2)AD4,,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象交軸于兩點(diǎn),交軸于點(diǎn),點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為

(1)求二次函數(shù)的解析式和直線的解析式;

(2)點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸的垂線,交拋物線于點(diǎn),當(dāng)點(diǎn)在第一象限時(shí),求線段長(zhǎng)度的最大值;

(3)在拋物線上是否存在異于的點(diǎn),使邊上的高為,若存在求出點(diǎn)的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D0,4),B60).若反比例函數(shù)y=x0)的圖象經(jīng)過(guò)線段OC的中點(diǎn)A,交DC于點(diǎn)E,交BC于點(diǎn)F.設(shè)直線EF的解析式為y=k2x+b

1)求反比例函數(shù)和直線EF的解析式;

2)求OEF的面積;

3)請(qǐng)結(jié)合圖象直接寫(xiě)出不等式k2x+b0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的對(duì)稱(chēng)軸是直線且與軸相交于兩點(diǎn),與軸交于點(diǎn)點(diǎn)的坐標(biāo)為

求拋物線的解析式;

若點(diǎn)是第一象限內(nèi)拋物線上一點(diǎn),過(guò)點(diǎn)作直線軸于點(diǎn)交直線于點(diǎn)當(dāng)時(shí),求四邊形的面積.

的條件下,若點(diǎn)在拋物線上,點(diǎn)在拋物線的對(duì)稱(chēng)軸上,當(dāng)以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求出所有符合條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)yx3的圖象與反比例函數(shù)y(k為常數(shù),且k0)的圖象交于A1,a),B兩點(diǎn).

1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);

2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,等邊△ABC的邊長(zhǎng)為4,點(diǎn)DBC邊上一動(dòng)點(diǎn),且CEBD,連接AD,BE,ADBE相交于點(diǎn)P,連接PC.則線段PC的最小值等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線與直線分別交于點(diǎn).直線交于點(diǎn).記線段,圍成的區(qū)域(不含邊界)為.橫,縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).

1)當(dāng)時(shí),區(qū)域內(nèi)的整點(diǎn)個(gè)數(shù)為_____;

2)若區(qū)域內(nèi)沒(méi)有整點(diǎn),則的取值范圍是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn),點(diǎn),點(diǎn)均落在格點(diǎn)上.

1_________

2)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫(huà)出一個(gè)以為底邊的等腰,使該三角形的面積等于的面積,并簡(jiǎn)要說(shuō)明點(diǎn)的位置是如何找到的(不要求證明)__________

查看答案和解析>>

同步練習(xí)冊(cè)答案