【題目】如圖,一次函數(shù)yx3的圖象與反比例函數(shù)y(k為常數(shù),且k0)的圖象交于A(1,a),B兩點.
(1)求反比例函數(shù)的表達(dá)式及點B的坐標(biāo);
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標(biāo).
【答案】(1),B(2,1);(2)P(,0).
【解析】
(1)由一次函數(shù)解析式求出點A的坐標(biāo),代入y中求出反比例函數(shù)解析式,再將兩個函數(shù)解析式聯(lián)立解出點B坐標(biāo);
(2)作點B關(guān)于軸的對稱點,連接并求出直線AD解析式,再求得與軸交點的坐標(biāo)即可得到答案;
(1)解:把點代人一次函數(shù)yx3中,
得,解得 a=2,
∴A(1,2),將A代入反比例函數(shù),
得,
反比例函數(shù)的表達(dá)式為,
當(dāng)時,
聯(lián)立一次函數(shù)與反比例函數(shù)關(guān)系式成方程組,得:
,解得: ,
∴B(2,1).
(2)如圖,作點B關(guān)于軸的對稱點(2,-1),連接與軸交于一點即為點,此時PA+PB的值最小,
設(shè)直線AD的關(guān)系式為y=kx+b,將點A、D的坐標(biāo)代入,
得,解得,
∴設(shè)直線AD的關(guān)系式為y=-3x+5,
當(dāng)y=0時,x=,
∴P(,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
中華優(yōu)秀傳統(tǒng)文化是中華民族的“根”和“魂”,是我們必須世代傳承的文化根脈、文化基因.為傳承優(yōu)秀傳統(tǒng)文化,某校為各班購進(jìn)《三國演義》和《水滸傳》連環(huán)畫若干套,其中每套《三國演義》連環(huán)畫的價格比每套《水滸傳》連環(huán)畫的價格貴60元,用4800元購買《水滸傳》連環(huán)畫的套數(shù)是用3600元購買《三國演義》連環(huán)畫套數(shù)的2倍,求每套《水滸傳》連環(huán)畫的價格.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一條長米,寬米的矩形草地上修三條小路,小路都等寬,除小路外,草地面積為米2的個矩形小塊,則小路的寬度應(yīng)為( )
A. 米或米 B. 米 C. 米 D. 米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在四邊形中,,,分別是上的點,且,探究圖中之間的數(shù)量關(guān)系。小明同學(xué)探究此問題的方法是:延長到點,使。連接,先證明,再證明,可得出結(jié)論。他的結(jié)論應(yīng)是______________________________________(不寫過程)。
(2)如圖2,若在四邊形中,,,分別是上的點,且,上述結(jié)論是否仍然成立,并說明理由。
(3)如圖3,已知在四邊形中,,,若點在的延長線上,點在的延長線上,仍然滿足,請寫出與的數(shù)量關(guān)系,并給出證明過程。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y =ax2+bx+ c的圖象如圖,有以下結(jié)論:①a+b+c<0; ②a-b+c >2;③abc>0;④4a-2b+c <0;⑤c-a>1.其中所有正確結(jié)論的序號是( )
A. ①② B. ①③④ C. ①②③⑤ D. ①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y1=ax2+c與x軸交于A、B兩點,與y軸交于點C,點P在拋物線上,過P(1,﹣3),B(4,0)兩點作直線y2=kx+b.
(1)求a、c的值;
(2)根據(jù)圖象直接寫出y1>y2時,x的取值范圍;
(3)在拋物線上是否存在點M,使得S△ABP=5S△ABM,若存在,求出點M的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價格購進(jìn)某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知在△ABC中,∠ACB=90°,AC=BC=1,點D是AB上任意一點,AE⊥AB,且AE=BD,DE與AC相交于點F.
(1)試判斷△CDE的形狀,并說明理由.
(2)是否存在點D,使AE=AF?如果存在,求出此時AD的長,如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在小山的東側(cè)A莊,有一熱氣球,由于受西風(fēng)的影響,以每分鐘35 m的速度沿著與水平方向成75°角的方向飛行,40 min時到達(dá)C處,此時氣球上的人發(fā)現(xiàn)氣球與山頂P點及小山西側(cè)的B莊在一條直線上,同時測得B莊的俯角為30°.又在A莊測得山頂P的仰角為45°,求A莊與B莊的距離及山高(結(jié)果保留根號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com