【題目】(1)在數(shù)軸上表示下列各數(shù),并用“<”號(hào)把它們連接.

3, -1, 0, -2.5, 1.5, 2

(2)快遞員要從物流中心出發(fā)送貨,已知甲住戶(hù)在物流中心的東邊 2km 處,乙住戶(hù)在甲住戶(hù)的西邊 3km 處,丙住戶(hù)在物流中心的西邊 1.5km 處,請(qǐng)建立數(shù)軸表示物流中心、甲住戶(hù)、乙住戶(hù)、丙住戶(hù)的位置關(guān)系.

【答案】1)圖詳見(jiàn)解析(2)圖詳見(jiàn)解析

【解析】

1)畫(huà)出數(shù)軸,注意數(shù)軸的三要素,原點(diǎn),正方向,單位長(zhǎng)度要體現(xiàn)出來(lái),然后把以上各數(shù)在原點(diǎn)上以點(diǎn)的形式表示出來(lái),最后按照左邊的數(shù)小于右邊的數(shù)進(jìn)行排列.

2)以物流中心為原點(diǎn),正方向?yàn)闁|方,單位長(zhǎng)度為1km,建立數(shù)軸,表示出各個(gè)位置.

1

由數(shù)軸可知,左邊的數(shù)小于右邊的數(shù),則

2)以物流中心為原點(diǎn),正方向?yàn)闁|,單位長(zhǎng)度為1km,則甲所在位置為+2km,乙所在位置為+2-3=-1km,丙所在位置為0-1.5=-1.5km.如圖所示:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,C=Rt,以BC為直徑的O交AB于點(diǎn)D,切線DE交AC于點(diǎn)E.

(1)求證:A=ADE;

(2)若AD=16,DE=10,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上有三個(gè)點(diǎn)A、B、C,請(qǐng)回答下列問(wèn)題.

1A、B、C三點(diǎn)分別表示 、 、

2)將點(diǎn)B向左移動(dòng)3個(gè)單位長(zhǎng)度后,點(diǎn)B所表示的數(shù)是

3)將點(diǎn)A向右移動(dòng)4個(gè)單位長(zhǎng)度后,點(diǎn)A所表示的數(shù)是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2﹣2(m+1)x+m2﹣3=0.

(1)當(dāng)m取何值時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根?

(2)設(shè)x1、x2是方程的兩根,且x12+x22=22+x1x2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,EF分別為AB、BC的中點(diǎn),連接CE、DF,將△CBE沿CE對(duì)折,得到△CGE,延長(zhǎng)EGCD的延長(zhǎng)線于點(diǎn)H

1)求證:CEDF;

2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】7 9 日,滴滴發(fā)布北京市滴滴網(wǎng)約車(chē)價(jià)格調(diào)整,公布了新的滴滴快車(chē)計(jì)價(jià)規(guī)則,車(chē)費(fèi)由總里程費(fèi)+總時(shí)長(zhǎng)費(fèi)兩部分構(gòu)成,不同時(shí)段收費(fèi)標(biāo)準(zhǔn)不同,具體收費(fèi)標(biāo)準(zhǔn)如下表,如果車(chē)費(fèi)不足起步價(jià),則按起步價(jià)收費(fèi).

時(shí)間段

里程費(fèi)(元/千米)

時(shí)長(zhǎng)費(fèi)(元/分鐘)

起步價(jià)(元)

06:00-10:00

1.80

0.80

14.00

10:00-17:00

1.45

0.40

13.00

17:00-21:00

1.50

0.80

14.00

21:00-6:00

2.15

0.80

14.00

(1)小明早上 7:10 乘坐滴滴快車(chē)上學(xué),行車(chē)?yán)锍?/span> 6 千米,行車(chē)時(shí)間 10 分鐘,則應(yīng)付車(chē)費(fèi)多少元?

(2)小云 17:10 放學(xué)回家,行車(chē)?yán)锍?/span> 1 千米,行車(chē)時(shí)間 15 分鐘,則應(yīng)付車(chē)費(fèi)多少元?

(3)下晚自習(xí)后小明乘坐滴滴快車(chē)回家,20:45 在學(xué)校上車(chē),由于堵車(chē),平均速度是 a 千米/小時(shí),15 分鐘后走另外一條路回家,平均速度是 b 千米/小時(shí),5 分鐘后到家,則他應(yīng)付車(chē)費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)DBC上,DEAB于點(diǎn)E,DFBCAC于點(diǎn)F,BD=CF,BE=CD.若∠AFD=145°,則∠EDF=_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖(1),已知:在ABC中,∠BAC90°,ABAC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)DE.證明:DEBD+CE

2)如圖(2),將(1)中的條件改為:在ABC中,ABAC,DA、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BACα,其中α為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DEBD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.

3)拓展與應(yīng)用:如圖(3),DED、AE三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且ABFACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷DEF的形狀并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,AB=AC,ED,F分別是邊ABBC,AC的中點(diǎn).

1)求證:四邊形AEDF是菱形;

2)若∠B=30°,BC=4 ,求四邊形AEDF的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案