【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀并說(shuō)明理由.
【答案】(1)見(jiàn)解析. (2)見(jiàn)解析. (3)△DEF為等邊三角形.見(jiàn)解析.
【解析】
(1)根據(jù)BD⊥直線m,CE⊥直線m得∠BDA=∠CEA=90°,而∠BAC=90°,根據(jù)等角的余角相等得∠CAE=∠ABD,然后根據(jù)“AAS”可判斷△ADB≌△CEA,則AE=BD,AD=CE,于是DE=AE+AD=BD+CE;
(2)由∠BDA=∠AEC=∠BAC=120°,就可以求出∠BAD=∠ACE,進(jìn)而由AAS就可以得出△BAD≌△ACE,就可以得出BD=AE,DA=CE,即可得出結(jié)論;
(3)由等邊三角形的性質(zhì),可以求出∠BAC=120°,就可以得出△BAD≌△ACE,就有BD=AE,進(jìn)而得出△BDF≌△AEF,得出DF=EF,∠BFD=∠AFE,而得出∠DFE=60°,就有△DEF為等邊三角形.
(1)如圖1,
∵BD⊥直線m,CE⊥直線m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
在△ADB和△CEA中,
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)如圖2,
∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,
∴∠DBA=∠CAE,
在△ADB和△CEA中,
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(3)如圖3,
由(2)可知,△ADB≌△CEA,
∴BD=AE,∠DBA=∠CAE,
∵△ABF和△ACF均為等邊三角形,
∴∠ABF=∠CAF=60°,BF=AF,
∴∠DBA+∠ABF=∠CAE+∠CAF,
∴∠DBF=∠FAE,
∵在△DBF和△EAF中,
,
∴△DBF≌△EAF(SAS),
∴DF=EF,∠BFD=∠AFE,
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,
∴△DEF為等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電信公司有A、B兩種計(jì)費(fèi)方案:月通話費(fèi)用y(元)與通話時(shí)間x(分鐘)的關(guān)系,如圖所示,下列說(shuō)法中正確的是( 。
A.月通話時(shí)間低于200分鐘選B方案劃算
B.月通話時(shí)間超過(guò)300分鐘且少于400分鐘選A方案劃算
C.月通話費(fèi)用為70元時(shí),A方案比B方案的通話時(shí)間長(zhǎng)
D.月通話時(shí)間在400分鐘內(nèi),B方案通話費(fèi)用始終是50元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在數(shù)軸上表示下列各數(shù),并用“<”號(hào)把它們連接.
3, -1, 0, -2.5, 1.5, 2
(2)快遞員要從物流中心出發(fā)送貨,已知甲住戶在物流中心的東邊 2km 處,乙住戶在甲住戶的西邊 3km 處,丙住戶在物流中心的西邊 1.5km 處,請(qǐng)建立數(shù)軸表示物流中心、甲住戶、乙住戶、丙住戶的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店銷(xiāo)售10臺(tái)A型和20臺(tái)B型電腦的利潤(rùn)為4000元,銷(xiāo)售20臺(tái)A型和10臺(tái)B型電腦的利潤(rùn)為3500元.
(1)求每臺(tái)A型電腦和B型電腦的銷(xiāo)售利潤(rùn);
(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過(guò)A型電腦的2倍,設(shè)購(gòu)進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷(xiāo)售總利潤(rùn)為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②該商店購(gòu)進(jìn)A型、B型電腦各多少臺(tái),才能使銷(xiāo)售總利潤(rùn)最大?
(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下調(diào)m(0<m<100)元,且限定商店最多購(gòu)進(jìn)A型電腦70臺(tái).若商店保持兩種電腦的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺(tái)電腦銷(xiāo)售總利潤(rùn)最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線與反比例函數(shù)()圖像交于點(diǎn)A,將直線向右平移4個(gè)單位,交反比例函數(shù)()圖像于點(diǎn)B,交y軸于點(diǎn)C,連結(jié)AB、AC,則△ABC的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線與直線垂直相交于點(diǎn),點(diǎn)在射線上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合),點(diǎn)在射線上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合).
(1)如圖1,已知、分別是和的角平分線,
①當(dāng)時(shí),求的度數(shù);
②點(diǎn)在運(yùn)動(dòng)的過(guò)程中,的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明變化的情況;若不發(fā)生變化,試求出的大;
(2)如圖2,延長(zhǎng)至,已知、的角平分線與的角平分線所在的直線分別相交于、,在中,如果有一個(gè)角是另一個(gè)角的3倍,請(qǐng)直接寫(xiě)出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=45°,AB=,AC=6,點(diǎn)D,E為邊AC上的點(diǎn),AD=1,CE=2,點(diǎn)F為線段DE上一點(diǎn)(不與D,E重合),分別以點(diǎn)D、E為圓心,DF、EF為半徑作圓.若兩圓與邊AB,BC共有三個(gè)交點(diǎn)時(shí),線段DF長(zhǎng)度的取值范圍是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD中,E是BC上一點(diǎn),F是CD延長(zhǎng)線上一點(diǎn),,連接AE,AF,EF,G為EF中點(diǎn),連接AG,DG.
(1)如圖1:若,,求DG;
(2)如圖2:延長(zhǎng)GD至M,使,過(guò)M作MN∥FD交AF的延長(zhǎng)線于N,連接NG,若.求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各數(shù)填入相應(yīng)的括號(hào)里-2,100π,-5,0.8,-|+5.2|,0,0.1010010001…,-(-4)
正有理數(shù)集合:{ }
整數(shù)集合:{ }
負(fù)分?jǐn)?shù)集合:{ }
無(wú)理數(shù)集合:{ }
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com