【題目】縣政府計劃建設(shè)一項水利工程,工程需要運送的土石方總量為(單位:),某運輸公司承擔(dān)了運送土石方的任務(wù).

1)運輸公司平均運輸速度v(單位:天)與完成運輸所需時間t(單位:天)之間具有怎樣的函數(shù)關(guān)系?

2)這個運輸公司共有80輛卡車,每天可運輸土石方為(單位:),公司完成全部運輸任務(wù)需要多長時間?

3)當(dāng)公司以問題(2)中的速度工作了30天后,由于工程進(jìn)度的需要,剩下的運輸任務(wù)必須在20天內(nèi)完成,則運輸公司至少要增加多少輛卡車?

【答案】(1);(2)公司完成全部運輸任務(wù)需要60天;(3)運輸公司至少要增加40輛卡車.

【解析】

1)由總量=vt,求出v即可;
2)把v的值代入計算即可求出t的值;
3)設(shè)需要增加a輛卡車,每輛卡車每天運輸土石方為m3,求出前30天與后20天的土石方確定出解析式,即可求出a的最小值.

1)根據(jù)題意得:,

2)當(dāng)時,

,

答:公司完成全部運輸任務(wù)需要60天;

3)設(shè)需要增加a輛卡車,每輛卡車每天運輸土石方為,

30天運輸土石方為:

20天運輸土石方為:

設(shè)30天后的每天平均運輸速度為,所需時間為,

,

由反比例函數(shù)的性質(zhì)可知,隨著的增大而減小,

當(dāng)時,

,

,的最小值是40

答:運輸公司至少要增加40輛卡車.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)藝術(shù)節(jié)期間,向全校學(xué)生征集書畫作品.九年級美術(shù)王老師從全年級14個班中隨機抽取了4個班,對征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計,制作了如下兩幅不完整的統(tǒng)計圖.

(1)王老師采取的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”),王老師所調(diào)查的4個班征集到作品共 件,其中b班征集到作品 件,請把圖2補充完整;

(2)王老師所調(diào)查的四個班平均每個班征集作品多少件?請估計全年級共征集到作品多少件?

(3)如果全年級參展作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生.現(xiàn)在要在其中抽兩人去參加學(xué)?偨Y(jié)表彰座談會,請直接寫出恰好抽中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,ACBCCD是⊙O的直徑,與AB相交于點G,過點DEFAB,分別交CA、CB的延長線于點E、F,連接BD.

1)求證:EF是⊙O的切線;

2)求證:BD2ACBF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與直線都經(jīng)過、兩點,該拋物線的頂點為C

1)求此拋物線和直線的解析式;

2)設(shè)直線與該拋物線的對稱軸交于點E,在射線上是否存在一點M,過Mx軸的垂線交拋物線于點N,使點M、N、C、E是平行四邊形的四個頂點?若存在,求點M的坐標(biāo);若不存在,請說明理由;

3)設(shè)點P是直線下方拋物線上的一動點,當(dāng)面積最大時,求點P的坐標(biāo),并求面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春季是傳染病多發(fā)的季節(jié),積極預(yù)防傳染病是學(xué)校高度重視的一項工作,為此,某校對學(xué)生宿舍采取噴灑藥物進(jìn)行消毒.在對某宿舍進(jìn)行消毒的過程中,先經(jīng)過的集中藥物噴灑,再封閉宿舍,然后打開門窗進(jìn)行通風(fēng),室內(nèi)每立方米空氣中含藥量與藥物在空氣中的持續(xù)時間之間的函數(shù)關(guān)系,在打開門窗通風(fēng)前分別滿足兩個一次函數(shù),在通風(fēng)后又成反比例,如圖所示.下面四個選項中錯誤的是(

A. 經(jīng)過集中噴灑藥物,室內(nèi)空氣中的含藥量最高達(dá)到

B. 室內(nèi)空氣中的含藥量不低于的持續(xù)時間達(dá)到了

C. 當(dāng)室內(nèi)空氣中的含藥量不低于且持續(xù)時間不低于35分鐘,才能有效殺滅某種傳染病毒.此次消毒完全有效

D. 當(dāng)室內(nèi)空氣中的含藥量低于時,對人體才是安全的,所以從室內(nèi)空氣中的含藥量達(dá)到開始,需經(jīng)過后,學(xué)生才能進(jìn)入室內(nèi)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了開發(fā)利用海洋資城,某勘測飛機測量一島嶼兩端A,B的距高,飛機在距海平面垂直高度為100m的點C處測得端點A的俯角為60°,然后沿著平行于AB的方向水平飛行500m,在點D測得端點B的俯角為45°,則島嶼兩端A,B的距離為___________.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖1,拋物線軸交于兩點,與軸交于點

1)求拋物線的表達(dá)式;

2)點是拋物線上異于點的動點,若的面積與的面積相等,求出點的坐標(biāo);

3)如圖2,當(dāng)的中點時,過點軸,交拋物線于點.連接,將沿軸向左平移個單位長度(),將平移過程中重疊部分的面積記為,求的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直角△AOB的直角頂點O在坐標(biāo)原點,OB5OA10,斜邊AB的中點C恰在y軸上,反比例函數(shù)k0)的圖象經(jīng)過點B,則k的值為(  )

A.10B.C.D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于、兩點,是以點0,3)為圓心,2為半徑的圓上的動點,是線段的中點,連結(jié).則線段的最大值是(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案