【題目】如圖,點 在同一直線上, , ,再添加一個條件仍不能證明 的是( )
A.B. C.D.
【答案】D
【解析】
根據(jù)全等三角形的判定定理進行解答.
解:由BE=CF得到:BC=FE.
A、由條件BC=FE,∠B=∠F添加AB=DF,根據(jù)全等三角形的判定定理SAS能證明△ABC≌△DFE,故本選項錯誤;
B、由條件BC=FE,∠B=∠F添加∠A=∠D,根據(jù)全等三角形的判定定理AAS能證明△ABC≌△DFE,故本選項錯誤;
C、因為AC∥DE,所以∠ACB=∠DEF,再由條件BC=FE,∠B=∠F,根據(jù)全等三角形的判定定理ASA能證明△ABC≌△DFE,故本選項錯誤;
D、由條件BC=FE,∠B=∠F添加AC=DE,由SSA不能證明△ABC≌△DFE,故本選項正確.
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校標(biāo)準(zhǔn)化建設(shè)需購進一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.
(1)求每臺電腦和每臺電子白板各多少萬元;
(2)根據(jù)學(xué)校需要,實際購進電腦和電子白板共30臺,總費用30萬元,請你通過計算求學(xué)校購買了電腦和電子白板各多少臺.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,點O是邊AC上的一個動點,過O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F.
(1)求證:OE=OF.
(2)試確定點O在邊AC上的位置,使四邊形AECF是矩形,并加以證明.
(3)在(2)的條件下,且△ABC滿足 ____________時,矩形AECF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計劃組織師生參加哈爾濱冰雪節(jié),感受冰雪藝術(shù)的魅力.出租公司現(xiàn)有甲、乙兩種型號的客車可供租用,且每輛乙型客車的租金比每輛甲型客車少60元.若該校租用3輛甲種客車,4輛乙種客車,則需付租金1720元.
(1)該出租公司每輛甲、乙兩型客車的租金各為多少元?
(2)若學(xué)校計劃租用6輛客車,租車的總租金不超過1560元,那么最多租用甲型客車多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y1=kx+b與y2=x+a的圖象如圖,則下列結(jié)論:①k<0;②a>0;③關(guān)于x的方程kx﹣x=a﹣b的解是x=3;④當(dāng)x<3時,y1<y2中.則正確的序號有________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)在菱形ABCD中,E,F(xiàn)分別是BC,CD上的點,且CE=CF
(1)求證:△ABE≌△ADF
(2)過點C作CG‖EA交AF于點H,交AD于點G,若∠BAE=25°,∠BCD=130°,求∠AHC
的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,俄羅斯方塊游戲中,圖形經(jīng)過平移使其填補空位,則正確的平移方式是( )
[Failed to download image : http://192.168.0.10:8086/QBM/2019/8/9/2265110730670080/2266396395864065/STEM/34cd169bb880437797498d7a59a34864.png]
A.先向右平移5格,再向下平移3格
B.先向右平移4格,再向下平移5格
C.先向右平移4格,再向下平移4格
D.先向右平移3格,再向下平移5格
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,三角形的三個頂點的位置如圖,為三角形內(nèi)一點,的坐標(biāo)為
(1)平移三角形,使點與原點重合,請畫出平移后的三角形
(2)直接寫出的對應(yīng)點的坐標(biāo);并寫出平移的規(guī)律.
( , );
( , );
( , );
(3)求三角形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com