【題目】如圖,俄羅斯方塊游戲中,圖形經(jīng)過(guò)平移使其填補(bǔ)空位,則正確的平移方式是(

[Failed to download image : http://192.168.0.10:8086/QBM/2019/8/9/2265110730670080/2266396395864065/STEM/34cd169bb880437797498d7a59a34864.png]

A.先向右平移5格,再向下平移3

B.先向右平移4格,再向下平移5

C.先向右平移4格,再向下平移4

D.先向右平移3格,再向下平移5

【答案】C

【解析】

根據(jù)圖形A與下方圖形中空白部分的位置解答即可.

解:由圖可知,正確的平移方式向右平移4格,再向下平移4格.
故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小亮與小明做投骰子(質(zhì)地均勻的正方體)的實(shí)驗(yàn)與游戲.

1)在實(shí)驗(yàn)中他們共做了50次試驗(yàn),試驗(yàn)結(jié)果如下:

朝上的點(diǎn)數(shù)

1

2

3

4

5

6

出現(xiàn)的次數(shù)

10

9

6

9

8

8

填空:此次實(shí)驗(yàn)中,“1點(diǎn)朝上的頻率是

小亮說(shuō):根據(jù)試驗(yàn),出現(xiàn)1點(diǎn)朝上的概率最大.他的說(shuō)法正確嗎?為什么?

2)小明也做了大量的同一試驗(yàn),并統(tǒng)計(jì)了“1點(diǎn)朝上的次數(shù),獲得的數(shù)據(jù)如下表:

試驗(yàn)總次數(shù)

100

200

500

1000

2000

5000

10000

1點(diǎn)朝上的次數(shù)

18

34

82

168

330

835

1660

1點(diǎn)朝上的頻率

0.180

0.170

0.164

0.168

0.165

0.167

0.166

“1點(diǎn)朝上的概率的估計(jì)值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn) 在同一直線上, , ,再添加一個(gè)條件仍不能證明 的是( )

A.B. C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在半徑為 中,弦 , 是弦 所對(duì)的優(yōu)弧上的動(dòng)點(diǎn),連接 過(guò)點(diǎn) 的垂線交射線 于點(diǎn) ,當(dāng) 是等腰三角形時(shí),線段 的長(zhǎng)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校七年級(jí)2班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤?10分制):

(l)甲隊(duì)成績(jī)的中位數(shù)是____分,乙隊(duì)成績(jī)的眾數(shù)是____分;

(2)計(jì)算乙隊(duì)的平均成績(jī)和方差;

(3)已知甲隊(duì)的平均成績(jī)是9分,方差是1.4分,則成績(jī)較為整齊的是哪個(gè)隊(duì)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C90°,O為△ABC的三條角平分線的交點(diǎn),ODBC,OEAC,OFAB,點(diǎn)D、E、F分別是垂足,且BC8cm,CA6cm,則點(diǎn)O到邊AB的距離為(  )

A. 2cm B. 3cm C. 4cm D. 5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,直線分別與、交于點(diǎn)、點(diǎn).

1)如圖1,當(dāng)點(diǎn)在線段上,若,則__________°;

2)如圖2,當(dāng)點(diǎn)在線段的延長(zhǎng)線上,交于點(diǎn),則、之間滿足怎樣的關(guān)系,請(qǐng)證明你的結(jié)論;

3)如圖3,在(2)的條件下,平分,交于點(diǎn),射線分成,且與交于點(diǎn),若,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l1與直線l2y=x+3平行,直線l1x軸的交點(diǎn)的坐標(biāo)為A2,0),求:

1)直線l1的表達(dá)式.

2)直線l1與坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=kx+b與坐標(biāo)軸交于A,B兩點(diǎn),其中點(diǎn)B的坐標(biāo)為(0,4),tanBAO=,一條拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),且與直線y=kx+b交于點(diǎn)C(m,8),點(diǎn)P為線段BC上一動(dòng)點(diǎn)(不與點(diǎn)B,點(diǎn)C重合),PDx軸于點(diǎn)D,交拋物線于點(diǎn)Q.

(1)求直線和拋物線的函數(shù)關(guān)系式;

(2)設(shè)點(diǎn)P的橫坐標(biāo)為t,線段PQ的長(zhǎng)度為d,求出dt之間的函數(shù)關(guān)系式,并求出d的最大值;

(3)是否存在點(diǎn)P的位置,使得以點(diǎn)P,D,B為頂點(diǎn)的三角形是等腰三角形?如果存在,直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案