【題目】如圖,在△ABC中,AB=4 cm,AC=2 cm

(1)AB上取一點DD不與AB重合),當AD=_________cm時,△ACD∽△ABC

(2)AC的延長線上取一點E,當CE=________cm時,△AEB∽△ABC此時BEDC有怎樣的位置關系?為什么?

【答案】(1)1; (2)6.

【解析】(1)如圖,∵∠A=∠A,∴當AD:AC=AC:AB時,△ACD∽△ABC.

AD:AC=AC:AB可得:AD·AB=AC2,∵AC=2,AB=4,∴解得AD=1,即當AD=1時,AD:AC=AC:AB;

(2)如圖,∵∠A=∠A,∴當AE:AB=AB:AC時,△AEB∽△ABC.

AE:AB=AB:AC可得AE·AC=AB2,∵AC=2,AB=4,∴AE=8,∴CE=AE-AC=6.

此時,BE∥CD,理由如下:

∵△ACD∽△ABC,△AEB∽△ABC,

∴∠ACD=∠ABC,∠AEB=∠ABC

∴∠ACD=∠AEB,

∴BE∥CD.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=,ACD沿AD折疊,使得點C落在斜邊AB上的點E處.

1)問:△BDE與△BAC相似嗎?

2)已知AC=6BC=8,求線段AD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為a的正方形中挖去一個邊長為b的小正方形(ab)(如圖甲),把余下的部分拼成一個矩形(如圖乙),根據(jù)兩個圖形中陰影部分的面積相等,可以驗證( )

A. a+b2=a2+2ab+b2

B. a﹣b2=a2﹣2ab+b2

C. a2﹣b2=a+b)(a﹣b

D. a+2b)(a﹣b=a2+ab﹣2b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D、E、FG四點在△ABC的三邊上,其中DGEF相交于點H.若 ∠ABC∠EFC70°,∠ACB60°,∠DGB40°,則下列三角形相似的是( )

A△BDG,△CEF B△ABC△CEF C△ABC,△BDG D△FGH,△ABC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AE2=AD·AB,且∠ABE=∠ACB

證明:1△ADE∽△AEB; (2DE∥BC; (3△BCE∽△EBD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究與發(fā)現(xiàn):

1 2 3

(1)探究一:三角形的一個內角與另兩個內角的平分線所夾的角之間的關系

已知:如圖1,在△ADC中,DP、CP分別平分∠ADC和∠ACD,

試探究∠P與∠A的數(shù)量關系,并說明理由.

(2)探究二:四邊形的兩個個內角與另兩個內角的平分線所夾的角之間的關系

已知:如圖2,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD

試探究∠P與∠A∠B的數(shù)量關系,并說明理由.

(3)探究三:六邊形的四個內角與另兩個內角的平分線所夾的角之間的關系

已知:如圖3,在六邊形ABCDEF中,DPCP分別平分∠EDC和∠BCD,

請直接寫出∠P與∠A∠B∠E∠F的數(shù)量關系:__ __ __

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小軍同學在學校組織的社會調查活動中負責了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機調查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖)

(1)請根據(jù)題中已有的信息補全頻數(shù)分布表和頻數(shù)分布直方圖;

月均用水量/t

頻數(shù)

百分比

2≤x3

2

4%

3≤x4

12

24%

4≤x5

5≤x6

10

20%

6≤x7

12%

7≤x8

3

6%

8≤x9

2

4%

 

(2)如果家庭月均用水量大于或等于4 t且小于7 t”為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有多少戶.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了預防流感,某學校在休息天用藥薰消毒法對教室進行消毒.已知藥物釋放過程中,室內每立方米空氣中含藥量y(毫克)與時間x(分鐘)成正比例;藥物釋放完畢后,yx成反比例,如圖所示.根據(jù)圖中提供的信息,解答下列問題

1寫出從藥物釋放開始,yx之間的兩個函數(shù)關系式及相應的自變量取值范圍;

2據(jù)測定,當空氣中每立方米的含藥量降低到0.45毫克以下時,學生方可進入教室,那么從藥物釋放開始,至少需要經(jīng)過多少小時后,學生才能進入教室?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.

(1)試判斷直線AB與直線CD的位置關系,并說明理由;

(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF∥GH;

(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.

查看答案和解析>>

同步練習冊答案