【題目】西安市某中學(xué)數(shù)學(xué)興趣小組在開展“保護(hù)環(huán)境,愛(ài)護(hù)樹木”的活動(dòng)中,利用課外時(shí)間測(cè)量一棵古樹的高,由于樹的周圍有水池,同學(xué)們?cè)诘陀跇浠?/span>3.3米的一平壩內(nèi)(如圖).測(cè)得樹頂A的仰角∠ACB=60°,沿直線BC后退6米到點(diǎn)D,又測(cè)得樹頂A的仰角∠ADB=45°.若測(cè)角儀DE高1.3米,求這棵樹的高AM.(結(jié)果保留兩位小數(shù),≈1.732)
【答案】12.20米
【解析】
可在Rt△ABD和Rt△ABC中,利用已知角的三角函數(shù),用AB表示出BD、BC,根據(jù)CD=BD﹣BC=6即可求出AB的長(zhǎng);已知HM、DE的長(zhǎng),易求得BM的值,由AM=AB﹣BM即可求出樹的高度.
設(shè)AB=x米.
Rt△ABD中,∠ADB=45°,BD=AB=x米.
Rt△ACB中,∠ACB=60°,BC=AB÷tan60°x米.
CD=BD﹣BC=(1)x=6,
解得:x=9+3,
即AB=(9+3)米.
∵BM=HM﹣DE=3.3﹣1.3=2,
∴AM=AB﹣BM=7+312.20(米).
答:這棵樹高12.20米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,且AD=AC,DE⊥BC,DE與AB相交于點(diǎn)E,EC與AD相交于點(diǎn)F.
(1)求證:△ABC∽△FCD;
(2)過(guò)點(diǎn)A作AM⊥BC于點(diǎn)M,求DE:AM的值;
(3)若S△FCD=5,BC=10,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC交于點(diǎn)D,DE⊥AC,垂足為E,交AB的延長(zhǎng)線于點(diǎn)F.
(1)求證:EF是⊙O的切線;
(2)若∠C=60°,AC=12,求的長(zhǎng).
(3)若tanC=2,AE=8,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐:
閱讀理解:數(shù)學(xué)興趣小組在探究如何求的值,經(jīng)過(guò)思考、討論、交流,得到以下思路:
如圖1,作,使,,延長(zhǎng)至點(diǎn),使,連接.
設(shè),則,..
請(qǐng)解決下列問(wèn)題:
(1)類比求解:求出的值;
(2)問(wèn)題解決:如圖2,某住宅樓的后面有一建筑物,當(dāng)光線與地面的夾角是時(shí),住宅在建筑物的墻上留下高的影子;而當(dāng)光線與地面的夾角是時(shí),住宅樓頂在地面上的影子與墻角有的距離(,,在一條直線上).求住宅樓的高度(結(jié)果保留根號(hào));
(3)探究發(fā)現(xiàn):如圖3,小明用硬紙片做了兩個(gè)直角三角形,在中,,,;在中,,,.他將的斜邊與的斜邊重合在一起,并將沿方向移動(dòng).在移動(dòng)過(guò)程中,,兩點(diǎn)始終在邊上(移動(dòng)開始時(shí)點(diǎn)與點(diǎn)重合).探究在移動(dòng)過(guò)程中,是否存在某個(gè)位置,使得?如果存在,直接寫出的長(zhǎng)度;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)在軸正半軸上,,點(diǎn)為中點(diǎn),點(diǎn)在射線上,把線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,設(shè)點(diǎn)的橫坐標(biāo)為.請(qǐng)根據(jù)題意畫出圖形并完成下列問(wèn)題:
(1)求的長(zhǎng);
(2)設(shè)點(diǎn)的橫坐標(biāo)為,求與的關(guān)系式;
(3)在(2)的條件下,作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),連接,當(dāng)為等腰三角形時(shí),求點(diǎn)的橫坐標(biāo)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E在BC邊上,點(diǎn)F在AC邊上,將△ABD沿著AD翻折,使點(diǎn)B和點(diǎn)E重合,將△CEF沿著EF翻折,點(diǎn)C恰與點(diǎn)A重合.結(jié)論:①∠BAC=90°,②DE=EF,③∠B=2∠C,④AB=EC,正確的有( 。
A.①②③④B.③④C.①②④D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)y=2x+b的圖象與x軸的交點(diǎn)為A(2,0),與y軸的交點(diǎn)為B,直線AB與反比例函數(shù)y=的圖象交于點(diǎn)C(﹣1,m).
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)直接寫出關(guān)于x的不等式2x+b>的解集;
(3)點(diǎn)P是這個(gè)反比例函數(shù)圖象上的點(diǎn),過(guò)點(diǎn)P作PM⊥x軸,垂足為點(diǎn)M,連接OP,BM,當(dāng)S△ABM=2S△OMP時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),按A→B→C的方向在AB和BC上移動(dòng),記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知:點(diǎn)A(0,0),B(,0),C(0,1)在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個(gè)頂點(diǎn)在BC邊上,作出的等邊三角形分別是第1個(gè)△AA1B1,第2個(gè)△B1A2B2,第3個(gè)△B2A3B3,…,則第個(gè)等邊三角形的邊長(zhǎng)等于__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com