【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,培養(yǎng)學(xué)生自主、團(tuán)結(jié)協(xié)作能力,某校推出了以下四個(gè)項(xiàng)目供學(xué)生選擇:A.家鄉(xiāng)導(dǎo)游:B.藝術(shù)暢游:C.體育世界:D.博物旅行.學(xué)校規(guī)定:每個(gè)學(xué)生都必須報(bào)名且只能選擇其中一個(gè)項(xiàng)目,學(xué)校對(duì)某班學(xué)生選擇的項(xiàng)目情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,解答下列問題:
(1)求該班學(xué)生總?cè)藬?shù);
(2)計(jì)算B項(xiàng)目所在扇形的圓心角的度數(shù);
(3)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)該校有1200名學(xué)生,請(qǐng)你估計(jì)選擇“博物旅行”項(xiàng)目學(xué)生的人數(shù).
【答案】(1)40;(2);(3)見解析;(4)120人.
【解析】
(1)利用A項(xiàng)目的頻數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù);
(2)用360°乘以B項(xiàng)目所占的百分比即可求出B項(xiàng)目所在扇形的圓心角的度數(shù);
(3)用總?cè)藬?shù)減去其它項(xiàng)目的人數(shù)求出C項(xiàng)目的人數(shù),然后補(bǔ)全條形統(tǒng)計(jì)圖;
(4)用總?cè)藬?shù)乘以博物旅行所占的百分比即可得到答案.
解:(1)調(diào)查的總?cè)藬?shù)有:12÷30%=40(人),
故答案為:40;
(2)B項(xiàng)目所在扇形的圓心角的度數(shù)是;
(3)C項(xiàng)目的人數(shù)為:40-12-14-4=10(人),
補(bǔ)條型統(tǒng)計(jì)圖如下:
(4)人;
估計(jì)選擇“博物旅行”項(xiàng)目學(xué)生的人數(shù)為1200人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖像都經(jīng)過點(diǎn),且為雙曲線上的一點(diǎn),為坐標(biāo)平面上一動(dòng)點(diǎn),垂直于軸,垂直于軸,垂足分別是、.
(1)寫出正比例函數(shù)和反比例函數(shù)的關(guān)系式.
(2)當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),直線上是否存在這樣的點(diǎn),使得與的面積相等?如果存在,請(qǐng)求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 為滿足社區(qū)居民健身的需要,市政府準(zhǔn)備采購(gòu)若干套健身器材免費(fèi)提供給社區(qū),經(jīng)考察,勁松公司有兩種型號(hào)的健身器可供選擇.
(1)勁松公司2015年每套型健身器的售價(jià)為萬元,經(jīng)過連續(xù)兩年降價(jià),2017年每套售價(jià)為 萬元,求每套型健身器年平均下降率 ;
(2)2017年市政府經(jīng)過招標(biāo),決定年內(nèi)采購(gòu)并安裝勁松公司兩種型號(hào)的健身器材共套,采購(gòu)專項(xiàng)費(fèi)總計(jì)不超過萬元,采購(gòu)合同規(guī)定:每套型健身器售價(jià)為萬元,每套型健身器售價(jià)我 萬元.
①型健身器最多可購(gòu)買多少套?
②安裝完成后,若每套型和型健身器一年的養(yǎng)護(hù)費(fèi)分別是購(gòu)買價(jià)的 和 .市政府計(jì)劃支出 萬元進(jìn)行養(yǎng)護(hù).問該計(jì)劃支出能否滿足一年的養(yǎng)護(hù)需要?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=30°,直線a∥b,頂點(diǎn)C在直線b上,直線a交AB于點(diǎn)D,交AC于點(diǎn)E,若∠1=145°,則∠2的度數(shù)是( )
A.30°B.35°C.40°D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)活動(dòng)小組在一次活動(dòng)中,對(duì)一個(gè)數(shù)學(xué)問題做了如下研究:
(問題發(fā)現(xiàn))(1)如圖①,在等邊三角形ABC中,點(diǎn)M是BC邊上任意一點(diǎn),連接AM,以AM為邊作等邊三角形AMN,連接CN,則∠ABC和∠ACN的數(shù)量關(guān)系為 ;
(變式探究)(2)如圖②,在等腰三角形ABC中,AB=BC,點(diǎn)M是BC邊上任意一點(diǎn)(不含端點(diǎn)B,C,連接AM,以AM為邊作等腰三角形AMN,使∠AMN=∠ABC,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;
(解決問題)(3)如圖③,在正方形ADBC中,點(diǎn)M為BC邊上一點(diǎn),以AM為邊作正方形AMEF,點(diǎn)N為正方形AMEF的中心,連接CN,AB,AE,若正方形ADBC的邊長(zhǎng)為8,CN=,直接寫出正方形AMEF的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點(diǎn)B(-2,0)、點(diǎn)C(8,0)兩點(diǎn),與y軸交于點(diǎn)A.
(1)求二次函數(shù)的表達(dá)式;
(2)連接AC、AB,若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B、C重合),過點(diǎn)N作NM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時(shí),求N點(diǎn)的坐標(biāo);
(3)連接OM,在(2)的結(jié)論下,線段AC上有一動(dòng)點(diǎn)P,連接PM,求PM+PC的值最小時(shí),點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等邊三角形,點(diǎn)D為平面內(nèi)一點(diǎn),連接DB、DC,∠BDC=120°.
(1)如圖①,當(dāng)點(diǎn)D在BC下方時(shí),連接AD,延長(zhǎng)DC到點(diǎn)E,使CE=BD,連接AE.
①求證:△ABD≌△ACE;
②如圖②,過點(diǎn)A作AF⊥DE于點(diǎn)F,直接寫出線段AF、BD、DC間的數(shù)量關(guān)系;
(2)若AB=2,DC=6,直接寫出點(diǎn)A到直線BD的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車在某次行駛過程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數(shù)關(guān)系,其部分圖象如圖所示.
(1)求y關(guān)于x的函數(shù)關(guān)系式;(不需要寫定義域)
(2)已知當(dāng)油箱中的剩余油量為8升時(shí),該汽車會(huì)開始提示加油,在此次行駛過程中,行駛了500千米時(shí),司機(jī)發(fā)現(xiàn)離前方最近的加油站有30千米的路程,在開往該加油站的途中,汽車開始提示加油,這時(shí)離加油站的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2+2bx+1﹣2b(b為常數(shù)).
(1)若點(diǎn)(2,5)在該拋物線上,求b的值;
(2)若該拋物線的頂點(diǎn)坐標(biāo)是(m,n),求n關(guān)于m的函數(shù)解析式;
(3)若拋物線與x軸交點(diǎn)之間的距離大于4,求b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com