【題目】如圖,直線(xiàn)l1l2l3,一等腰直角三角形ABC的三個(gè)頂點(diǎn)AB,C分別在l1l2,l3上,∠ACB=90°,ACl2與點(diǎn)D.已知l1l2的距離為1l2l3的距離為3,則線(xiàn)段CD的長(zhǎng)等于______

【答案】

【解析】

BFl3F,AEl3E交直線(xiàn)BDG.證△ACE≌△CBFAAS),得CE=BF,CF=AE,根據(jù)勾股定理求出AC,l2l3,得.

解:如圖,作BFl3FAEl3E交直線(xiàn)BDG

∵∠ACB=CFB=AEC=90°,

∴∠BCF+ACE=90°,

∵∠BCF+CBF=90°,

∴∠ACE=CBF,

在△ACE和△CBF中,

,

∴△ACE≌△CBFAAS),

CE=BF,CF=AE

l1l2的距離為1,l2l3的距離為3,

AG=1BF=GE=3,AE=4,

CE=BF=3

AC==5,

l2l3

,

CD=

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】牛牛和峰峰在同一直線(xiàn)跑道AB上進(jìn)行往返跑,牛牛從起點(diǎn)A出發(fā),峰峰在牛牛前方C處與牛牛同時(shí)出發(fā),當(dāng)牛牛超越峰峰到達(dá)終點(diǎn)B處時(shí),休息了100秒才又以原速返回A地,而峰峰到達(dá)終點(diǎn)B處后馬上以原來(lái)速度的3.2倍往回跑,最后兩人同時(shí)到達(dá)A地,兩人距B地的路程記為y(米),峰峰跑步時(shí)間記為x(秒),yx的函數(shù)關(guān)系如圖所示,則牛牛和峰峰第一次相遇時(shí)他們距A點(diǎn)_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,∠ABC90°

(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請(qǐng)標(biāo)明字母)

①作線(xiàn)段AC的垂直平分線(xiàn)l,交AC于點(diǎn)O;

②連接BO并延長(zhǎng),在BO的延長(zhǎng)線(xiàn)上截取OD,使得ODOB

③連接DA、DC

(2)試判斷AD、CD的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠A=60°BMAC于點(diǎn)M,CNAB于點(diǎn)N,BM,CN交于點(diǎn)O,連接MN.下列結(jié)論:①∠AMN=ABC;②圖中共有8對(duì)相似三角形;③BC=2MN.其中正確的個(gè)數(shù)是( 。

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2=0①有兩個(gè)不等的實(shí)數(shù)根.

k的取值范圍;

若方程的兩根的平方和為7,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)y=x2-mx+m2-2m為大于0的常數(shù))與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))

1)若點(diǎn)A的坐標(biāo)為(10

①求拋物線(xiàn)的表達(dá)式;

②當(dāng)nx≤2時(shí),函數(shù)值y的取值范圍是-y≤5-n,求n的值;

2)將拋物線(xiàn)在x軸下方的部分沿x軸翻折,得到新的函數(shù)的圖象,如圖,當(dāng)2x3時(shí),若此函數(shù)的值隨x的增大而減小,直接寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,ACBC4,P是△ABC的高CD上一個(gè)動(dòng)點(diǎn),以B點(diǎn)為旋轉(zhuǎn)中心把線(xiàn)段BP逆時(shí)針旋轉(zhuǎn)45°得到BP′,連接DP′,則DP′的最小值是( 。

A.2-2B.42C.2D.-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AD平分∠BACBC于點(diǎn)D,點(diǎn)EAB上,以AE為直徑的⊙O經(jīng)過(guò)點(diǎn)D

1)求證:直線(xiàn)BC是⊙O的切線(xiàn);

2)若∠B=30°,AC=3,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線(xiàn)yax2+bx+ca≠0)經(jīng)過(guò)點(diǎn)A1,0.B4,0),C0,2)三點(diǎn),直線(xiàn)ykx+t經(jīng)過(guò)B.C兩點(diǎn),點(diǎn)D是拋物線(xiàn)上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Dy軸的平行線(xiàn),與直線(xiàn)BC相交于點(diǎn)E

1)求直線(xiàn)和拋物線(xiàn)的解析式;

2)當(dāng)點(diǎn)D在直線(xiàn)BC下方的拋物線(xiàn)上運(yùn)動(dòng),使線(xiàn)段DE的長(zhǎng)度最大時(shí),求點(diǎn)D的坐標(biāo);

3)點(diǎn)D在運(yùn)動(dòng)過(guò)程中,若使O.C.D.E為頂點(diǎn)的四邊形為平行四邊形時(shí),請(qǐng)直接寫(xiě)出滿(mǎn)足條件的所有點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案