【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),正比例函數(shù)的圖象與反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn).點(diǎn)軸上,且,反比例函數(shù)圖象上有一點(diǎn),且,則點(diǎn)坐標(biāo)為____

【答案】

【解析】

過(guò)點(diǎn)AADOB于點(diǎn)D,過(guò)點(diǎn)CCEx軸于點(diǎn)E,先求出點(diǎn)A的坐標(biāo)以及AB的長(zhǎng),設(shè)C(xy),再證ABD~BCECE=BE,得y=(x-6),聯(lián)立方程組,進(jìn)而即可求解.

過(guò)點(diǎn)AADOB于點(diǎn)D,過(guò)點(diǎn)CCEx軸于點(diǎn)E,

∵正比例函數(shù)的圖象與反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn)

,

D(3,0)

,ADOB,

OB=2OD=6,BD=OD=3,

B(6,0),

AB==2

設(shè)C(x,y)

ADOB,CEx軸,

∴∠ADB=CEB=90°,∠DAB+ABD=90°,

∵∠ABC=90°,

∴∠CBE+ABD=90°,

∴∠DAB=CBE,

ABD~BCE

,即

CE=BE,

y=(x-6),

∵點(diǎn)C在反比例函數(shù)上,

聯(lián)立得方程組:,解得:(舍去),

∴點(diǎn)C的坐標(biāo)是:

故答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如(圖1),已知經(jīng)過(guò)原點(diǎn)的拋物線yax2+bxx軸交于另一點(diǎn)A(,0),在第一象限內(nèi)與直線yx交于點(diǎn)B(2,t)

1)求拋物線的解析式;

2)在直線OB下方的拋物線上有一點(diǎn)C,點(diǎn)C到直線OB的距離為,求點(diǎn)C的坐標(biāo);

3)如(圖2),若點(diǎn)M在拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點(diǎn)P,使得△POC∽△MOB?若存在,求出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】黃石市在創(chuàng)建國(guó)家級(jí)文明衛(wèi)生城市中,綠化檔次不斷提升.某校計(jì)劃購(gòu)進(jìn)A,B兩種樹(shù)木共100棵進(jìn)行校園綠化升級(jí),經(jīng)市場(chǎng)調(diào)查:購(gòu)買(mǎi)A種樹(shù)木2棵,B種樹(shù)木5棵,共需600元;購(gòu)買(mǎi)A種樹(shù)木3棵,B種樹(shù)木1棵,共需380元.

(1)求A種,B種樹(shù)木每棵各多少元?

(2)因布局需要,購(gòu)買(mǎi)A種樹(shù)木的數(shù)量不少于B種樹(shù)木數(shù)量的3倍.學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場(chǎng)價(jià)格不變的情況下(不考慮其他因素),實(shí)際付款總金額按市場(chǎng)價(jià)九折優(yōu)惠,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買(mǎi)樹(shù)木的方案,使實(shí)際所花費(fèi)用最省,并求出最省的費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,ECD的中點(diǎn),FBE上的一點(diǎn),連接CF并延長(zhǎng)交AB于點(diǎn)M,MNCM交射線AD于點(diǎn)N

1)如圖1,當(dāng)點(diǎn)FBE中點(diǎn)時(shí),求證:AMCE;

2)如圖2,若3時(shí),求的值;

3)若nn≥3)時(shí),請(qǐng)直接寫(xiě)出的值.(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB為⊙O的直徑,過(guò)點(diǎn)AAD平分∠BAC交⊙O于點(diǎn)D,過(guò)點(diǎn)DBC的平行線分別交AC、AB的延長(zhǎng)線于點(diǎn)EF,DGAB于點(diǎn)G,連接BD

(1)求證:△AED∽△DGB

(2)求證:EF是⊙O的切線;

(3),OA4,求劣弧的長(zhǎng)度(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形中,,點(diǎn)是對(duì)角線上一動(dòng)點(diǎn),將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn),連接,連接并延長(zhǎng),分別交、于點(diǎn)

1)如圖1,若,求菱形的面積;

2)如圖2,求證:

    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠BAC90°,ADBCD,BG平分∠ABCADE,交ACGGFBCF,連接EF

1)如圖1,求證:四邊形AEFG是菱形;

2)如圖2,若EBG的中點(diǎn),過(guò)點(diǎn)EEMBCACM,在不添加任何輔助線的情況下,請(qǐng)直接寫(xiě)出圖2中是CM長(zhǎng)倍的所有線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某大樓的頂部樹(shù)有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1AB=10,AE=15.(i=1是指坡面的鉛直高度BH與水平寬度AH的比)

1)求點(diǎn)B距水平面AE的高度BH;

2)求廣告牌CD的高度.

(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1.參考數(shù)據(jù):1.4141.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明、小亮和小強(qiáng)三人準(zhǔn)備下象棋,他們約定用拋硬幣的游戲方式來(lái)確定哪個(gè)人先下棋,規(guī)則如下:三人手中各持有一枚質(zhì)地均勻的硬幣,他們同時(shí)將手中硬幣拋落到水平地面為一個(gè)回合,落地后,三枚硬幣中,恰有兩枚正面向上或者反面向上的兩人先下棋;若三枚硬幣均為正面向上或反面向上,則不能確定其中兩人先下棋.

1)請(qǐng)你完成下面表示游戲一個(gè)回合所有可能出現(xiàn)的結(jié)果的樹(shù)狀圖;

2)求出一個(gè)回合能確定兩人下棋的概率.

解:(1)樹(shù)狀圖為:

查看答案和解析>>

同步練習(xí)冊(cè)答案