【題目】小明、小亮和小強(qiáng)三人準(zhǔn)備下象棋,他們約定用拋硬幣的游戲方式來(lái)確定哪個(gè)人先下棋,規(guī)則如下:三人手中各持有一枚質(zhì)地均勻的硬幣,他們同時(shí)將手中硬幣拋落到水平地面為一個(gè)回合,落地后,三枚硬幣中,恰有兩枚正面向上或者反面向上的兩人先下棋;若三枚硬幣均為正面向上或反面向上,則不能確定其中兩人先下棋.

1)請(qǐng)你完成下面表示游戲一個(gè)回合所有可能出現(xiàn)的結(jié)果的樹(shù)狀圖;

2)求出一個(gè)回合能確定兩人下棋的概率.

解:(1)樹(shù)狀圖為:

【答案】1)見(jiàn)解析;(2

【解析】

1)此題需兩步完成,可根據(jù)題意畫(huà)樹(shù)狀圖求得所有可能出現(xiàn)的結(jié)果;

2)根據(jù)樹(shù)狀圖求得一個(gè)回合能確定兩人先下棋的情況,再根據(jù)概率公式求解即可.

1)畫(huà)樹(shù)狀圖得:

2)∴一共有8種等可能的結(jié)果,

一個(gè)回合能確定兩人先下棋的有6種情況,

∴一個(gè)回合能確定兩人先下棋的概率為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),正比例函數(shù)的圖象與反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn).點(diǎn)軸上,且,反比例函數(shù)圖象上有一點(diǎn),且,則點(diǎn)坐標(biāo)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷(xiāo)售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場(chǎng)調(diào)查,每天的銷(xiāo)售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

售價(jià)x(元/千克)

50

60

70

銷(xiāo)售量y(千克)

100

80

60

1)求yx之間的函數(shù)表達(dá)式;

2)設(shè)商品每天的總利潤(rùn)為W(元),則當(dāng)售價(jià)x定為多少元時(shí),廠商每天能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

3)如果超市要獲得每天不低于1350元的利潤(rùn),且符合超市自己的規(guī)定,那么該商品每千克售價(jià)的取值范圍是多少?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為1,點(diǎn)PBC上任意一點(diǎn)(可與點(diǎn)BC重合),分別過(guò)B、C、D作射線AP的垂線,垂足分別是B′、C′、D′,則BB′+CC′+DD′的最小值是( 。

A. 1 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC10cm,BDAC于點(diǎn)D,BD8cm.點(diǎn)M從點(diǎn)A出發(fā),沿AC的方向勻速運(yùn)動(dòng),同時(shí)直線PQ由點(diǎn)B出發(fā),沿BA的方向勻速運(yùn)動(dòng),運(yùn)動(dòng)過(guò)程中始終保持PQAC,直線PQAB于點(diǎn)P、交BC于點(diǎn)Q、交BD于點(diǎn)F.連接PM,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0t5).線段CM的長(zhǎng)度記作y,線段BP的長(zhǎng)度記作y,yy關(guān)于時(shí)間t的函數(shù)變化情況如圖所示.

1)由圖2可知,點(diǎn)M的運(yùn)動(dòng)速度是每秒  cm;當(dāng)t  秒時(shí),四邊形PQCM是平行四邊形?在圖2中反映這一情況的點(diǎn)是  (并寫(xiě)出此點(diǎn)的坐標(biāo));

2)設(shè)四邊形PQCM的面積為ycm2,求yt之間的函數(shù)關(guān)系式;

3)連接PC,是否存在某一時(shí)刻t,使點(diǎn)M在線段PC的垂直平分線上?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系,直線y軸交于點(diǎn)A,與雙曲線交于點(diǎn)

1)求點(diǎn)B的坐標(biāo)及k的值;

2)將直線AB平移,使它與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,若的面積為6,求直線CD的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)M0的坐標(biāo)為(1,0),將線段OM0繞原點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn)45°,再將其延長(zhǎng)到M1,使得M1M0⊥OM0,得到線段OM1;又將線段OM1繞原點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn)45°,再將其延長(zhǎng)到M2,使得M2M1⊥OM1,得到線段OM2;如此下去,得到線段OM3,OM4,OM5,根據(jù)以上規(guī)律,請(qǐng)直接寫(xiě)出OM2014的長(zhǎng)度為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,,,點(diǎn)在線段上,由點(diǎn)向點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)與點(diǎn)重合時(shí),停止運(yùn)動(dòng).以點(diǎn)為圓心,為半徑作,交于點(diǎn),點(diǎn)上且在矩形外,

1)當(dāng)時(shí),__________,扇形的面積=__________,點(diǎn)的最短距離=__________

2相切時(shí),求的長(zhǎng)?

3)如圖交于點(diǎn)、,當(dāng)時(shí),求的長(zhǎng)?

4)請(qǐng)從下面兩問(wèn)中,任選一道進(jìn)行作答.

①當(dāng)有兩個(gè)公共點(diǎn)時(shí),直接寫(xiě)出的取值范圍.

②直接寫(xiě)出點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng)以及的最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于二次函數(shù)y=2x2﹣mx+m﹣2,以下結(jié)論:

拋物線交x軸有交點(diǎn);

不論m取何值,拋物線總經(jīng)過(guò)點(diǎn)(1,0);

若m6,拋物線交x軸于A、B兩點(diǎn),則AB>1;

拋物線的頂點(diǎn)在y=﹣2(x﹣1)2圖象上.其中正確的序號(hào)是( 。

A. ①②③④ B. ①②③ C. ①②④ D. ②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案