【題目】某旅游公司大巴從旅行社出發(fā),先向西行駛3千米到達(dá)景點(diǎn),再繼續(xù)向西行駛2千米到達(dá)景點(diǎn),然后向東行駛7千米到達(dá)景點(diǎn),最后回到旅行社.
(1)以旅行社為原點(diǎn),以向東方向?yàn)檎较颍?/span>1個(gè)單位長(zhǎng)度表示1千米,畫出數(shù)軸,并在該數(shù)軸上表示出、、三個(gè)景點(diǎn)的位置.
(2)景點(diǎn)距離景點(diǎn)多遠(yuǎn)?
(3)該旅游大巴共行駛了多少路程?
【答案】(1)圖見解析;(2)景點(diǎn)距離景點(diǎn)5千米;(3)該旅游大巴共行駛了14千米.
【解析】
(1)先根據(jù)數(shù)軸的定義畫出數(shù)軸,再根據(jù)三個(gè)景點(diǎn)的位置描點(diǎn)即可;
(2)根據(jù)數(shù)軸的定義:數(shù)軸上兩點(diǎn)之間的距離即可得;
(3)根據(jù)絕對(duì)值運(yùn)算即可得.
(1)根據(jù)數(shù)軸的定義畫圖如下,三個(gè)景點(diǎn)在數(shù)軸上的位置如圖所示:
(2)由(1)可知,景點(diǎn)與景點(diǎn)的距離為
答:景點(diǎn)距離景點(diǎn)5千米;
(3)該旅游大巴共行駛的路程為(千米)
答:該旅游大巴共行駛了14千米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列4個(gè)三角形中,均有AB=AC,則經(jīng)過三角形的一個(gè)頂點(diǎn)的一條直線能夠?qū)⑦@個(gè)三角形分成兩個(gè)小等腰三角形的是( 。
A. ①③B. ①②④C. ①③④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=3,M是邊CD上一點(diǎn),將△ADM沿直線AM對(duì)折,得到△ANM.
(1)當(dāng)AN平分∠MAB時(shí),求DM的長(zhǎng);
(2)連接BN,當(dāng)DM=1時(shí),求△ABN的面積;
(3)當(dāng)射線BN交線段CD于點(diǎn)F時(shí),求DF的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一科技小組進(jìn)行了機(jī)器人行走性能試驗(yàn),在試驗(yàn)場(chǎng)地有A、B、C三點(diǎn)順次在同一筆直的賽道上,甲、乙兩機(jī)器人分別從A、B兩點(diǎn)同時(shí)同向出發(fā),經(jīng)過7min同時(shí)到達(dá)C點(diǎn),乙機(jī)器人始終以60m/min的速度行走,如圖是甲、乙兩機(jī)器人之間的距離y(m)與他們的行走時(shí)間x(min)之間的圖象,請(qǐng)結(jié)合圖象,回答下列問題:
(1)A、B兩點(diǎn)之間的距離是 m,甲機(jī)器人前2min的速度為 m/min.
(2)若前3min甲機(jī)器人的速度不變,求出前3min,甲、乙兩機(jī)器人之間的距離y(m)與他們的行走時(shí)間r(min)之間的關(guān)系式.
(3)求出兩機(jī)器人出發(fā)多長(zhǎng)時(shí)間相距28m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC中,AB=AC,過B點(diǎn)作射線BE,過C點(diǎn)作射線CF,使∠ABE=∠ACF,且射線BE,CF交于點(diǎn)D,過A點(diǎn)作AM⊥BD于M.
(1)探究∠BDC和∠CAB的數(shù)量關(guān)系并說明理由;
(2)求證:BM=DM+DC;
(3)如圖2,將射線BE,CF分別繞點(diǎn)B和點(diǎn)C順時(shí)針旋轉(zhuǎn)至如圖位置,若∠ABE=∠ACF仍然成立,射線BE交射線CF的反向延長(zhǎng)線于點(diǎn)D,過A點(diǎn)作AM⊥BD于M.請(qǐng)問(2)中的結(jié)論是否還成立?如果成立,請(qǐng)證明.如果不成立,線段BM,DM,DC又有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在復(fù)習(xí)課上,wsy老師要求寫出幾個(gè)與實(shí)數(shù)有關(guān)的結(jié)論:小明同學(xué)寫了以下5個(gè):
①任何無理數(shù)都是無限不循環(huán)小數(shù);
②有理數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng);
③在1和3之間的無理數(shù)有且只有這5個(gè);
④是分?jǐn)?shù),它是有理數(shù);
⑤由四舍五入得到的近似數(shù)7.30表示大于或等于7.295,而小于7.305的數(shù).其中正確的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線L:y=x2+x-6與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),并與y軸相交于點(diǎn)C.
(1)求A、B、C三點(diǎn)的坐標(biāo),并求出△ABC的面積;
(2)將拋物線向左或向右平移,得到拋物線L,且L與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),并與y軸交于點(diǎn)C,要使△ABC和△ABC的面積相等,求所有滿足條件的拋物線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解本校七年級(jí)學(xué)生課后延時(shí)服務(wù)課外閱讀情況,隨機(jī)抽取該校七年級(jí)部分學(xué)生進(jìn)行問卷調(diào)查(每人只選一種書籍),如圖是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息,解答下列問題:
(1)這次活動(dòng)一共調(diào)查了________名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,“小說”所在扇形的圓心角等于________;
(3)補(bǔ)全條形統(tǒng)計(jì)圖.
(4)若該校七年級(jí)學(xué)生720人,試求出該年級(jí)閱讀漫畫的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于任意三點(diǎn)A、B、C我們給出如下定義:“橫長(zhǎng)”a:三點(diǎn)中橫坐標(biāo)的最大值與最小值的差,“縱長(zhǎng)”b:三點(diǎn)中縱坐標(biāo)的最大值與最小值的差,若三點(diǎn)的橫長(zhǎng)與縱長(zhǎng)相等,我們稱這三點(diǎn)為正方點(diǎn).
例如:點(diǎn) (,0) ,點(diǎn) (1,1) ,點(diǎn) (, ),則、、三點(diǎn)的 “橫長(zhǎng)”=||=3,、、三點(diǎn)的“縱長(zhǎng)”=||=3. 因?yàn)?/span>=,所以、、三點(diǎn)為正方點(diǎn).
(1)在點(diǎn) (3,5) ,(3,) , (,)中,與點(diǎn)、為正方點(diǎn)的是 ;
(2)點(diǎn)P (0,t)為軸上一動(dòng)點(diǎn),若,,三點(diǎn)為正方點(diǎn),的值為 ;
(3)已知點(diǎn) (1,0).
①平面直角坐標(biāo)系中的點(diǎn)滿足以下條件:點(diǎn),,三點(diǎn)為正方點(diǎn),在圖中畫出所有符合條件的點(diǎn)組成的圖形;
②若直線:上存在點(diǎn),使得,,三點(diǎn)為正方點(diǎn),直接寫出m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com