【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的.下面是一個(gè)案例.
原題:如圖①,點(diǎn)分別在正方形的邊上, ,連接,則,試說明理由.
(1)思路梳理
因?yàn)?/span>,所以把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°至,可使與 重合.因?yàn)?/span>,所以,點(diǎn)共線.
根據(jù) ,易證 ,得.請(qǐng)證明.
(2)類比引申
如圖②,四邊形中, , ,點(diǎn)分別在邊上, .若都不是直角,則當(dāng)與滿足等量關(guān)系時(shí), 仍然成立,請(qǐng)證明.
(3)聯(lián)想拓展
如圖③,在中, ,點(diǎn)均在邊上,且.猜想應(yīng)滿足的等量關(guān)系,并寫出證明過程.
【答案】(1)SAS,△AFE;(2);(3).
【解析】試題分析:(1)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,再證明△AFG≌△AFE進(jìn)而得到EF=FG,即可得EF=BE+DF;
(2)∠B+∠D=180°時(shí),EF=BE+DF,與(1)的證法類同;
(3)根據(jù)△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABE′,根據(jù)旋轉(zhuǎn)的性質(zhì),可知△AEC≌△ABE′得到BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,根據(jù)Rt△ABC中的,AB=AC得到∠E′BD=90°,所以E′B2+BD2=E′D2,證△AE′D≌△AED,利用DE=DE′得到DE2=BD2+EC2;
試題解析:解:(1)∵AB=AD,∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC=∠B=90°,∴∠FDG=180°,點(diǎn)F、D、G共線,在△AFE和△AFG中,∵AE=AG,∠EAF=∠FAG,AF=AF,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF.
(2)∠B+∠D=180°時(shí),EF=BE+DF;
∵AB=AD,∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC+∠B=180°,∴∠FDG=180°,點(diǎn)F、D、G共線,在△AFE和△AFG中,∵AE=AG,∠FAE=∠FAG,AF=AF,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF.
(3)猜想:DE2=BD2+EC2,理由如下:
根據(jù)ΔABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到ΔACD′,如圖,連接ED′.
∴ΔABDΔACD′.
∴CD′=BD,AD′=AD,∠B=∠ACD′,∠BAD=∠D′ AC.
在RtΔABC中,∵AB=AC,∴∠ABC=∠ACB=45°.
∴∠ACB+∠ACD′=90°,即∠D′ CE=90°,∴D’C2+CE2=D′E2.
又∵∠DAE=45°,∴∠BAD+∠EAC=45°.
∴∠D′AC+∠EAC=45°,即∠D′ AE=45°.∴ΔAD′ EΔADE,∴ED=ED′,∴DE2=BD2+EC2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,正比例函數(shù)y=ax的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(3,2)
(1)試確定上述正比例函數(shù)和反比例函數(shù)的表達(dá)式;
(2)根據(jù)圖象回答,在第一象限內(nèi),當(dāng)x取何值時(shí),反比例函數(shù)的值大于正比例函數(shù)的值?
(3)點(diǎn)M(m,n)是反比例函數(shù)圖象上的一動(dòng)點(diǎn),其中0<m<3,過點(diǎn)M作直線MB∥x軸,交y軸于點(diǎn)B;過點(diǎn)A作直線AC∥y軸交x軸于點(diǎn)C,交直線MB于點(diǎn)D.當(dāng)四邊形OADM的面積為6時(shí),請(qǐng)判斷線段BM與DM的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】向陽中學(xué)數(shù)學(xué)興趣小組對(duì)關(guān)于x的方程(m+1)+(m﹣2)x﹣1=0提出了下列問題:
(1)是否存在m的值,使方程為一元二次方程?若存在,求出m的值,并解此方程;
(2)是否存在m的值,使方程為一元一次方程?若存在,求出m的值,并解此方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿對(duì)角線AC剪開,再把△ACD沿CA方向平移得到△ACD,連接AD,BC.若∠ACB=30°,AB=1,CC=x,則下列結(jié)論:①△AAD≌△CCB;②當(dāng)x=1時(shí),四邊形ABCD是菱形;③當(dāng)x=2時(shí),△BDD為等邊三角形.其中正確的是_______(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李明準(zhǔn)備進(jìn)行如下操作試驗(yàn),把一根長(zhǎng)40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個(gè)正方形.
(1)要使這兩個(gè)正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?
(2)李明認(rèn)為這兩個(gè)正方形的面積之和不可能等于48 cm2,你認(rèn)為他的說法正確嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓桌正上方的燈泡(看作一個(gè)點(diǎn))發(fā)出的光線照射桌面后,在地面上形成陰影.已知桌面的直徑為1.2 m,桌面距離地面1 m.若燈泡距離地面3 m,則地面上陰影部分的面積為 ( )
A. 0.36πm2 B. 0.81πm2 C. 2πm2 D. 3.24πm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八(1)班同學(xué)為了解2015年某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理,
月均用水量 (t) | 頻數(shù)(戶) | 頻率 |
6 | 0.12 | |
m | 0.24 | |
16 | 0.32 | |
10 | 0.20 | |
4 | n | |
2 | 0.04 |
請(qǐng)解答以下問題:
(1)這里采用的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”),樣本容量是 ;
(2)填空: , ,并把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若將月均用水量的頻數(shù)繪成扇形統(tǒng)計(jì)圖,則月均用水量“
(4)若該小區(qū)有1000戶家庭,求該小區(qū)月均用水量超過10t的家庭大約有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】補(bǔ)全下列各題解題過程.
如圖,EF∥AD,∠1 = ∠2,∠BAC = 70°,求 ∠AGD 的度數(shù).
解:∵EF∥AD ( 已知 )
∴∠2 = ( )
又∵∠1=∠2 ( )
∴∠1=∠3 ( )
∴AB∥ ( )
∴∠BAC + = 180°( )
∵∠BAC = 70°(已知 )
∴∠AGD = _ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com