【題目】如圖,將矩形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△ACD,連接AD,BC.若∠ACB=30°,AB=1,CC=x,則下列結(jié)論:①△AAD≌△CCB;②當(dāng)x=1時(shí),四邊形ABCD是菱形;③當(dāng)x=2時(shí),△BDD為等邊三角形.其中正確的是_______(填序號).
【答案】①②③
【解析】①∵四邊形ABCD是矩形,△A1C1D1由△ACD平移得到,
∴A1D1=AD=CB,AA1=CC1,A1D1∥AD∥BC,
∴∠ D1A1C1=∠BCA,
∴△ AAD≌△CCB.
②∵四邊形ABCD是矩形,△A1C1D1是由△ACD平移得到,
∴C1D1=CD=AB,C1D1∥DC∥AB,
∴四邊形ABC1D1是平行四邊形,
在Rt△ABC中,點(diǎn)C1是線段AC的中點(diǎn),
∴BC=AC,
而∠ACB=30°,
∴AB=AC,
∴AB=BC1,
∴四邊形ABC1D1是菱形.
③x=2時(shí),ABD1共線,且AD1=4,BD=4,DD1=4,
∴△BDD1為等邊三角形.
所以①②③正確.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了增強(qiáng)學(xué)生的身體素質(zhì),某校堅(jiān)持常年的全員體育鍛煉,并定期進(jìn)行體能測試.下面將某班學(xué)生立定跳遠(yuǎn)成績(精確到0.1m)進(jìn)行整理后,分成5組(含低值不含高值):1.60~1.80,1.80~2.00,2.00~2.20,2.20~2.40,2.40~2.60,已知前4個(gè)小組的頻率分別是0.05,0.15,0.30,0.35,第五個(gè)小組的頻數(shù)是9.
(1)該班參加這項(xiàng)測試的人數(shù)是多少人?
(2)請畫出頻數(shù)分布直方圖.
(3)成績在2.00米以上(含2.00米)為合格,則該班成績的合格率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=( 。
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長CB交x軸于點(diǎn)A1,作第1個(gè)正方形A1B1C1C;延長C1B1交x軸于點(diǎn)A2,作第2個(gè)正方形A2B2C2C1,…,按這樣的規(guī)律進(jìn)行下去,第2016個(gè)正方形的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的.下面是一個(gè)案例.
原題:如圖①,點(diǎn)分別在正方形的邊上, ,連接,則,試說明理由.
(1)思路梳理
因?yàn)?/span>,所以把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°至,可使與 重合.因?yàn)?/span>,所以,點(diǎn)共線.
根據(jù) ,易證 ,得.請證明.
(2)類比引申
如圖②,四邊形中, , ,點(diǎn)分別在邊上, .若都不是直角,則當(dāng)與滿足等量關(guān)系時(shí), 仍然成立,請證明.
(3)聯(lián)想拓展
如圖③,在中, ,點(diǎn)均在邊上,且.猜想應(yīng)滿足的等量關(guān)系,并寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2,l3、l4和l1、l2分別交于點(diǎn)A、B、C、D,點(diǎn)P在直線l3或l4上且不與點(diǎn)A、B、C、D重合.記∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.
(1)若點(diǎn)P在圖(1)位置時(shí),求證:∠3=∠1+∠2;
(2)著點(diǎn)P在圖(2)位置時(shí),請寫出∠1、∠2、∠3之間的關(guān)系,并說明理由;
(3)若點(diǎn)P在圖(3)位置時(shí),寫出∠1、∠2、∠3之間的關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,C在D的右側(cè),BE平分∠ABC,DE平分∠ADC,BE、DE所在直線交于點(diǎn)E,∠ADC=70°.
(1)求∠EDC的度數(shù);
(2)若∠ABC=n°,求∠BED的度數(shù)(用含n的代數(shù)式表示);
(3)將線段BC沿DC方向平移,使得點(diǎn)B在點(diǎn)A的右側(cè),其他條件不變,畫出圖形并判斷∠BED的度數(shù)是否改變,若改變,求出它的度數(shù)(用含n的式子表示);若不改變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=1,BC=,在AC邊上截取AD=BC,連接BD.
(1)通過計(jì)算,判斷AD2與ACCD的大小關(guān)系;
(2)求∠ABD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com