【題目】如圖,要判定與相似,欲添加一個條件,下列可行的條件有( )
①;②;③;④;⑤.
A. 個 B. 個 C. 個 D. 個
【答案】C
【解析】
由∠A=△A,得出要判定△ABC與△AED相似,根據(jù)有兩邊對應成比例,且夾角相等的兩三角形相似得出只要具備條件或即可;或根據(jù)有兩角對應相等的兩三角形相 似,判斷即可.
解:由∠A=△A,得出要判定△ABC與△AED相似,根據(jù)有兩邊對應成比例,且夾角相等的兩三角形相似得出只要具備條件或即可;
, ,
,,
,故①正確;
,故②正確;
,故③錯誤;
∠BED+∠C=,
∠B+∠EDC=,
∠ADE+∠EDC=,
∠B=∠ADE,∠A=∠A,
△AED∽ACB,故④正確;
∠A=∠A,∠BED=∠C,不能推出兩三角形相似,故⑤錯誤;
即正確的有①②④,共三個,
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】快車與慢車分別從甲、乙兩地同時相向出發(fā),勻速而行,快車到達乙地后停留,然后原路按原速返回,此時,快車比慢車晚到達甲地,快、慢兩車距各自出發(fā)地的路程與所用的時的關(guān)系如圖所示.
(1)甲、乙兩地之間的路程為____________.
(2)求的函數(shù)解析式,并寫出的取值范圍.
(3)當快、慢兩車相距時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的平面直角坐標系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點B1成中心對稱,再作△B2A3B3與△B2A2B1關(guān)于點B2成中心對稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點A2n+1的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.如果點P在線段BC上以3cm/s的速度由點B向C點運動,同時,點Q在線段CA上由點C向A點運動.
(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由.
(2)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線分別與軸,軸交于點,,過點的直線交軸于點.為的中點,為射線上一動點,連結(jié),,過作于點.
(1)直接寫出點,的坐標:(______,______),(______,______);
(2)當為中點時,求的長;
(3)當是以為腰的等腰三角形時,求點坐標;
(4)當點在線段(不與,重合)上運動時,作關(guān)于的對稱點,若落在軸上,則的長為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分學生成績(得分數(shù)取正
整數(shù),滿分為分)進行統(tǒng)計,已知組的頻數(shù)比組的頻數(shù)小,繪制統(tǒng)計頻數(shù)分別直方圖(未完成)
和扇形統(tǒng)計圖如下,
請解答下列問題:
()樣本容量為:__________, 為__________.
()為__________, 組所占比例為__________.
()補全頻數(shù)分布直方圖.
()若成績在分以上記作優(yōu)秀,全校共有名學生,估計成績優(yōu)秀學生有__________名.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(閱讀理解)利用完全平方公式,可以將多項式變形為的形式,我們把這樣的變形方法叫做多項式的配方法.運用多項式的配方法及平方差公式能對一些多項式進行分解因式.
例如:
(問題解決)根據(jù)以上材料,解答下列問題:
(1)用多項式的配方法將多項式化成的形式;
(2)用多項式的配方法及平方差公式對多項式進行分解因式;
(3)求證:不論,取任何實數(shù),多項式的值總為正數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=BD,點E、F分別是AB、AD上任意的點(不與端點重合),且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H.給出如下幾個結(jié)論:①△AED≌△DFB;②S四邊形BCDG=;③若AF=2DF,則BG=6GF;④CG與BD一定不垂直;⑤∠BGE的大小為定值.
其中正確的結(jié)論個數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com