【題目】如圖,將平行四邊形沿對折,使點落在點處,若,則到的距離為____________.
【答案】
【解析】分析:過點C作CM⊥AB的延長線于點M,根據(jù)翻折的性質(zhì),設AE=x,CE=x,BE=6-x,EM=8-x,在△CEM中,利用勾股定理列出方程即可求出x的值.然后算出三角形CBE的面積,根據(jù)等面積法即可求出點B到CE的距離.
詳解:作CM⊥AB于M,如圖所示:
則∠M=90°,
∵四邊形ABCD是平行四邊形,
∴BC=AD=4,BC∥AD,
∴∠CBM=∠A=60°,
∴∠BCM=30°,
∴BM=BC=4×=2.
在Rt△BMC中,根據(jù)勾股定理可得CM=2.
設AE=x,則CE=x,BE=6-x,EM=8-x,
∵CE2=CM2+EM2,
∴x2=(2)2+(8-x)2,
解得:x=,
∴CE=,BE=6-=,
∴S△CBE=.
∴點B到CE的距離= S△CBE÷CE×2=.
科目:初中數(shù)學 來源: 題型:
【題目】給出下列命題:
①在直角三角形ABC中,已知兩邊長為3和4,則第三邊長為5;
②三角形的三邊a、b、c滿足a2+c2=b2,則∠C=90°;
③△ABC中,若∠A:∠B:∠C=1:5:6,則△ABC是直角三角形;
④△ABC中,若 a:b:c=1:2:,則這個三角形是直角三角形.
其中,正確命題的個數(shù)為( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點P(1,5)在函數(shù)(x>0)的圖象上,過點P分別作x軸、y軸的垂線,垂足為點A,B;Q(m,n)為圖象上另一動點,過點Q分別作x軸、y軸的垂線,垂足為點C、D.隨著m的增大,四邊形OCQD四邊形OAPB不重疊部分的面積 ( )
A. 先增大后減小 B. 先減小后增大
C. 先減小后增大再減小 D. 先增大后減小再增大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市計劃在“十周年”慶典當天開展購物抽獎活動,凡當天在該超市購物的顧客,均有一次抽獎的機會,抽獎規(guī)則如下:將如圖所示的圓形轉(zhuǎn)盤平均分成四個扇形,分別標上1,2,3,4四個數(shù)字,抽獎者連續(xù)轉(zhuǎn)動轉(zhuǎn)盤兩次,當每次轉(zhuǎn)盤停止后指針所指扇形內(nèi)的數(shù)為每次所得的數(shù)(若指針指在分界線時重轉(zhuǎn));當兩次所得數(shù)字之和為8時,返現(xiàn)金20元;當兩次所得數(shù)字之和為7時,返現(xiàn)金15元;當兩次所得數(shù)字之和為6時返現(xiàn)金10元.
(1)試用樹狀圖或列表的方法表示出一次抽獎所有可能出現(xiàn)的結(jié)果;
(2)某顧客參加一次抽獎,能獲得返還現(xiàn)金的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△BCE中,點A是邊BE上一點,以AB為直徑的⊙O與CE相切于點D,AD∥OC,點F為OC與⊙O的交點,連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一個棱長為的正方體的每個面等分成個小正方形,然后沿每個面正中心的一個正方形向里挖空(相當于挖去個小正方體),所得到的幾何體的表面積是( )
A. 78 B. 72 C. 54 D. 48
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)的圖像和一次函數(shù)y2=ax+b的圖像交于A(3,4)、B(—6,n)。
(1)求兩個函數(shù)的解析式;
(2)觀察圖像,寫出當x為何值時y1>y2?
(3)C、D分別是反比例函數(shù)第一、三象限的兩個分支上的點,且以A、B、C、D為頂點的四邊形是平行四邊形.請直接寫出C、D兩點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,等腰三角形ABO的底邊OA在x軸上,頂點B在反比例函數(shù)y= (x>0)的圖象上,當?shù)走匫A上的點A在x軸的正半軸上自左向右移動時,頂點B也隨之在反比例函數(shù)y= (x>0)的圖象上滑動,但點O始終位于原點.
(1)如圖①,若點A的坐標為(6,0),求點B的坐標;
(2)當點A移動到什么位置時,三角形ABO變成等腰直角三角形,請說明理由;
(3)在(2)中,如圖②,△PA1A是等腰直角三角形,點P在反比例函數(shù)y= (x>0)的圖象上,斜邊A1A在x軸上,求點A1的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com