精英家教網 > 初中數學 > 題目詳情

【題目】如圖,把一個棱長為的正方體的每個面等分成個小正方形,然后沿每個面正中心的一個正方形向里挖空(相當于挖去個小正方體),所得到的幾何體的表面積是(

A. 78 B. 72 C. 54 D. 48

【答案】B

【解析】

如圖所示,一、棱長為3的正方體的每個面等分成9個小正方形,那么每個小正方形的邊長是1,所以每個小正方面的面積是1;二、正方體的一個面有9個小正方形,挖空后,這個面的表面積增加了4個小正方形,減少了1個小正方形,即:每個面有12個小正方形,6個面就是6×12=72個,那么幾何體的表面積為72×1=72.

如圖所示,周邊的六個挖空的正方體每個面增加4個正方形,減少了1個小正方形,則每個面的正方形個數為12個,則表面積為12×6×1=72.

故選:B.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,BC=5C=30°.點D從點C出發(fā)沿CA方向以每秒2個單位長的速度向A點勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(t>0).過點DDFBC于點F,連接DE、EF.

(1)AC的長是   ,AB的長是 

(2)在D、E的運動過程中,線段EFAD的關系是否發(fā)生變化?若不變化,那么線段EFAD是何關系,并給予證明;若變化,請說明理由.

(3)當t為何值,BEF的面積是2?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我市某蔬菜生產基地在氣溫較低時,用裝有恒溫系統的大棚栽培一種在自然光照且溫度為18℃的條件下生長最快的新品種.如圖是某天恒溫系統從開啟到關閉及關閉后,大棚內溫度y()隨時間x(小時)變化的函數圖象,其中BC段是雙曲線y=的一部分.請根據圖中信息解答下列問題:

(1)恒溫系統在這天保持大棚內溫度18℃的時間有多少小時?

(2)k的值;

(3)當棚內溫度不低于16℃時,該蔬菜能夠快速生長,請問這天該蔬菜能夠快速生長多長時間?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將矩形OABC如圖放置,O為原點.若點A(﹣1,2),點B的縱坐標是,則點C的坐標是( 。

A. (4,2) B. (2,4) C. ,3) D. (3,

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將平行四邊形沿對折,使點落在點處,若,則的距離為____________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系中,ABCD的四個頂點的坐標分別為A(0,8),B(﹣6,8),C(﹣6,0),D(0,0),現有動點P在線段CB上運動,當△ADP為等腰三角形時,P點坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】點A、B在數軸上分別表示實數a、b,A、B兩點之間的距離表示為AB,在數軸上A、B兩點之間的距離AB=

利用數軸,根據數形結合思想,回答下列問題:

(1)數軸上表示2和6兩點之間的距離是_____ ,數軸上表示1和的兩點之間的距離為__________

(2)數軸上表示和1兩點之間的距離為_____數軸上表示兩點之間的距離為_________

(3)表示一個實數,且,化簡,

(4)的最小值為_______ ,

的最小值為__________ .

(5)的最大值為__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(背景)某班在一次數學實踐活動中,對矩形紙片進行折疊實踐操作,并將其產生的數學問題進行相關探究. (操作)如圖,在矩形ABCD中,AD=6,AB=4,點P是BC邊上一點,現將△APB沿AP對折,得△APM,顯然點M位置隨P點位置變化而發(fā)生改變
(問題)試求下列幾種情況下:點M到直線CD的距離

(1)∠APB=75°;
(2)P與C重合;
(3)P是BC的中點.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,已知A點從(1,0)點出發(fā),以每秒1個單位長的速度沿著x軸的正方向運動,經過t秒后,以O、A為頂點作菱形OABC,使B、C點都在第一象限內,且∠AOC=60°,又以P(0,4)為圓心,PC為半徑的圓恰好與OA所在的直線相切,則t=

查看答案和解析>>

同步練習冊答案