【題目】圖1是某小區(qū)入口實(shí)景圖,圖2是該入口抽象成的平面示意圖.已知入口BC寬3.9米,門衛(wèi)室外墻AB上的O點(diǎn)處裝有一盞路燈,點(diǎn)O與地面BC的距離為3.3米,燈臂OM長(zhǎng)為1.2米(燈罩長(zhǎng)度忽略不計(jì)),∠AOM=60°.
(1)求點(diǎn)M到地面的距離;
(2)某搬家公司一輛總寬2.55米,總高3.5米的貨車從該入口進(jìn)入時(shí),貨車需與護(hù)欄CD保持0.65米的安全距離,此時(shí),貨車能否安全通過?若能,請(qǐng)通過計(jì)算說明;若不能,請(qǐng)說明理由.(參考數(shù)據(jù):1.73,結(jié)果精確到0.01米)
【答案】(1)3.9米;(2)貨車能安全通過.
【解析】
(1)過M作MN⊥AB于N,交BA的延長(zhǎng)線于N,在Rt△OMN中,求出ON的長(zhǎng),即可求得BN的長(zhǎng),即可求得點(diǎn)M到地面的距離;
(2)左邊根據(jù)要求留0.65米的安全距離,即取CE=0.65,車寬EH=2.55,計(jì)算高GH的長(zhǎng)即可,與3.5作比較,可得結(jié)論.
(1)如圖,過M作MN⊥AB于N,交BA的延長(zhǎng)線于N,
在Rt△OMN中,∠NOM=60°,OM=1.2,∴∠M=30°,
∴ONOM=0.6,
∴NB=ON+OB=3.3+0.6=3.9,
即點(diǎn)M到地面的距離是3.9米;
(2)取CE=0.65,EH=2.55,∴HB=3.9﹣2.55﹣0.65=0.7,
過H作GH⊥BC,交OM于G,過O作OP⊥GH于P,
∵∠GOP=30°,∴tan30°,
∴GPOP0.404,
∴GH=3.3+0.404=3.704≈3.70>3.5,
∴貨車能安全通過.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),且PA=3,PB=4,PC=5,若將△APB繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)后得到△CQB,則∠APB的度數(shù) ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,P為CD的中點(diǎn),連結(jié)AP,過點(diǎn)B作BE⊥AP于點(diǎn)E,延長(zhǎng)CE交AD于點(diǎn)F,過點(diǎn)C作CH⊥BE于點(diǎn)G,交AB于點(diǎn)H,連接HF.下列結(jié)論正確的是( )
A. CE= B. EF= C. cos∠CEP= D. HF2=EFCF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=6cm,BC=8cm,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),設(shè)移動(dòng)的時(shí)間為ts.
(1)如果P、Q分別從A、B同時(shí)出發(fā),若t=3s,求四邊形APQC的面積.
(2)如果P、Q分別從A、B同時(shí)出發(fā),當(dāng)△PBQ的面積等于8cm2時(shí),求t的值.
(3)若△ABC與△BPQ相似,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(4,0),與y軸交于點(diǎn)B.在x軸上有一動(dòng)點(diǎn)C(m,0)(0<m<4),過點(diǎn)C作x軸的垂線交直線AB于點(diǎn)E,交該二次函數(shù)圖象于點(diǎn)D.
(1)求a的值和直線AB的解析式;
(2)過點(diǎn)D作DF⊥AB于點(diǎn)F,設(shè)△ACE,△DEF的面積分別為S1,S2,若S1=4S2,求m的值;
(3)點(diǎn)H是該二次函數(shù)圖象上位于第一象限的動(dòng)點(diǎn),點(diǎn)G是線段AB上的動(dòng)點(diǎn),當(dāng)四邊形DEGH是平行四邊形,且周長(zhǎng)取最大值時(shí),求點(diǎn)G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店以每件20元的價(jià)格購進(jìn)一批商品,如果以每件30元銷售,那么半月內(nèi)可售出400件.根據(jù)銷售經(jīng)驗(yàn),銷售單價(jià)每提高1元,半月內(nèi)的銷售量相應(yīng)減少20件.如何提高銷售單價(jià),才能在半月內(nèi)獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C是⊙O上一點(diǎn),點(diǎn)P在直徑AB的延長(zhǎng)線上,⊙O的半徑為3,PB=2,PC=4.
(1)求證:PC是⊙O的切線.
(2)求tan∠CAB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小磊要制作一個(gè)三角形的鋼架模型,在這個(gè)三角形中,長(zhǎng)度為x(單位:cm)的邊與這條邊上的高之和為40 cm,這個(gè)三角形的面積S(單位:cm2)隨x(單位:cm)的變化而變化.
(1)請(qǐng)直接寫出S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)當(dāng)x是多少時(shí),這個(gè)三角形面積S最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com