【題目】在如圖的網(wǎng)格中,小正方形的邊長都是1,利用所學(xué)知識(shí)兩種解法求四邊形ABCD的面積,寫出完整求解過程.
【答案】方法一:見解析;方法二:見解析.
【解析】
方法一,把不規(guī)則的四邊形ABCD補(bǔ)成規(guī)則圖形,常規(guī)做法是過A、B、C構(gòu)造以網(wǎng)格線為邊長的矩形,用矩形面積減去兩個(gè)小直角三角形和一個(gè)矩形的面積和即得到四邊形ABCD的面積.
方法二,通過連接AC把不規(guī)則的四邊形ABCD補(bǔ)成△ABC,則四邊形面積為△ABC面積減去直角△ACD面積.計(jì)算得到AB2=65,BC2=52,AC2=13,滿足勾股定理逆定理,即△ABC為直角三角形且∠ACB=90°,易求其面積.
方法一:如圖,構(gòu)造矩形GEFB,
∴S△GAB=GAGB=×1×8=4,
S矩形AECD=AEEC=3×2=6,
S△BCF=CFBF=×6×4=12,
S矩形GEFB=GEEF=4×8=32,
∴S四邊形ABCD=S矩形GEFB﹣S△GAB﹣S矩形AECD﹣S△BCF =32﹣4﹣6﹣12=10;
方法二:連接AC,得Rt△ADC,
由圖形及勾股定理得:AC2=32+22=13,BC2=62+42=52,AB2=82+12=65,
∴AC2+BC2=AB2,
∴△ACB為直角三角形且∠ACB=90°,
∴S△ACB=ACBC=,
S△ADC=ADCD=×2×3=3,
∴S四邊形ABCD=S△ACB﹣S△ADC=13﹣3=10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若規(guī)定這樣一種運(yùn)算:a△b=(|ab|+a+b),例如:2△3=(|23|+2+3)=3
(1)求3△4和(-3)△(-2)的值;
(2)將1,2,3,…,50這50個(gè)自然數(shù),任意分為25組,每組兩個(gè)數(shù),現(xiàn)將每組的兩個(gè)數(shù)中任一數(shù)值記作a,另一個(gè)記作b,代入代數(shù)式(|ab|+a+b)中進(jìn)行計(jì)算,求出其結(jié)果,25組數(shù)代入后可求得25個(gè)值,求這25個(gè)值的和的最大值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的邊AB在x軸上,點(diǎn)C的坐標(biāo)為(﹣5,4),點(diǎn)D在y軸的正半軸上,經(jīng)過點(diǎn)A的直線y=x﹣1與y軸交于點(diǎn)E,將直線AE沿y軸向上平移n(n>0)個(gè)單位長度后,得到直線l,直線l經(jīng)過點(diǎn)C時(shí)停止平移.
(1)點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;
(2)若直線l交y軸于點(diǎn)F,連接CF,設(shè)△CDF的面積為S(這里規(guī)定:線段是面積為0的三角形),求S與n之間的函數(shù)關(guān)系式,并寫出n的取值范圍;
(3)易知AE⊥AD于點(diǎn)A,若直線l交折線AD﹣DC于點(diǎn)P,當(dāng)△AEP為直角三角形時(shí),請(qǐng)直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1、2,已知四邊形ABCD為正方形,在射線AC上有一動(dòng)點(diǎn)P,作PE⊥AD(或延長線)于E,作PF⊥DC(或延長線)于F,作射線BP交EF于G.
(1)在圖1中,設(shè)正方形ABCD的邊長為2,四邊形ABFE的面積為y,AP=x,求y關(guān)于x的函數(shù)表達(dá)式;
(2)結(jié)論:GB⊥EF對(duì)圖1,圖2都是成立的,請(qǐng)任選一圖形給出證明;
(3)請(qǐng)根據(jù)圖2證明:△FGC∽△PFB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:若一個(gè)四邊形的兩條對(duì)角線相等,則稱這個(gè)四邊形為等對(duì)角線四邊形.請(qǐng)解答下列問題:
(1)寫出你所學(xué)過的特殊四邊形中是等對(duì)角線四邊形的兩種圖形的名稱;
(2)探究:當(dāng)?shù)葘?duì)角線四邊形中兩條對(duì)角線所夾銳角為60°時(shí),這對(duì)60°角所對(duì)的兩邊之和與其中一條對(duì)角線的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一方隊(duì)正沿箭頭所指的方向前進(jìn)
(1)A的位置為第三列第四行,表示為(3,4),那么B的位置是____________.
A. B. C. D.
(2)B左側(cè)第二個(gè)人的位置是____________.
A. B. C. D.
(3)如果隊(duì)伍向東前進(jìn),那么A北側(cè)第二個(gè)人的位置是____________.
A. B. C. D.
(4)表示的位置是____________.
A.A B.B C.C D.D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,數(shù)軸上有A、B、C三點(diǎn),且AB=3BC,若B為原點(diǎn),A點(diǎn)表示數(shù)為6.
(1)求C點(diǎn)表示的數(shù);
(2)若數(shù)軸上有一動(dòng)點(diǎn)P,以每秒1個(gè)單位的速度從點(diǎn)C向點(diǎn)A勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)用含t的代數(shù)式表示PB的長;
(3)在(2)的條件下,點(diǎn)P運(yùn)動(dòng)的同時(shí)有一動(dòng)點(diǎn)Q從點(diǎn)A以每秒2個(gè)單位的速度向點(diǎn)C勻速運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相距2個(gè)單位長度時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把邊長為2的等邊三角形△ABC沿直線BC向右平移,使點(diǎn)B與點(diǎn)C重合,得到△DCE,連接BD,交AC于點(diǎn)F.
(1)證明:AC⊥BD;
(2)求線段BD的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察如圖圖形,把一個(gè)三角形分別連接其三邊中點(diǎn),構(gòu)成4個(gè)小三角形,挖去中間的一個(gè)小三角形(如圖1),對(duì)剩下的三個(gè)小三角形再分別重復(fù)以上做法,……,據(jù)此解答下面的問題
(1)填寫下表:
圖形 | 挖去三角形的個(gè)數(shù) |
圖形1 | 1 |
圖形2 | 1+3 |
圖形3 | 1+3+9 |
圖形4 |
|
(2)根據(jù)這個(gè)規(guī)律,求圖n中挖去三角形的個(gè)數(shù)wn;(用含n的代數(shù)式表示)
(3)若圖n+1中挖去三角形的個(gè)數(shù)為wn+1,求wn+1﹣Wn
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com