【題目】如圖,已知CE是圓O的直徑,點(diǎn)B在圓O上由點(diǎn)E順時(shí)針向點(diǎn)C運(yùn)動(dòng)(點(diǎn)B不與點(diǎn)E、C重合),弦BD交CE于點(diǎn)F,且BD=BC,過點(diǎn)B作弦CD的平行線與CE的延長(zhǎng)線交于點(diǎn)A.
(1)若圓O的半徑為2,且點(diǎn)D為弧EC的中點(diǎn)時(shí),求圓心O到弦CD的距離;
(2)當(dāng)DFDB=CD2時(shí),求∠CBD的大;
(3)若AB=2AE,且CD=12,求△BCD的面積.
【答案】(1);(2)45°;(3)72.
【解析】試題分析:(1)過O作OH⊥CD于H,根據(jù)垂徑定理求出點(diǎn)O到H的距離即可;
(2)根據(jù)相似三角形的判定與性質(zhì),先證明△CDF∽△BDC,再根據(jù)相似三角形的性質(zhì)可求解;
(3)連接BE,BO,DO,并延長(zhǎng)BO至H點(diǎn),利用相似三角形的性質(zhì)判定,求得BH的長(zhǎng),然后根據(jù)三角形的面積求解即可.
試題解析:(1)如圖,過O作OH⊥CD于H,
∵點(diǎn)D為弧EC的中點(diǎn),
∴弧ED=弧CD,
∴∠OCH=45°,
∴OH=CH,
∵圓O的半徑為2,即OC=2,
∴OH=;
(2)∵當(dāng)DFDB=CD2時(shí),,
又∵∠CDF=∠BDC,
∴△CDF∽△BDC,
∴∠DCF=∠DBC,
∵∠DCF=45°,
∴∠DBC=45°;
(3)如圖,連接BE,BO,DO,并延長(zhǎng)BO至H點(diǎn),
∵BD=BC,OD=OC,
∴BH垂直平分CD,
又∵AB∥CD,
∴∠ABO=90°=∠EBC,
∴∠ABE=∠OBC=∠OCB,
又∵∠A=∠A,
∴△ABE∽△ACB,
∴,即AB2=AE×AC,
∴AC=,
設(shè)AE=x,則AB=2x,
∴AC=4x,EC=3x,
∴OE=OB=OC=,
∵CD=12,
∴CH=6,
∵AB∥CH,
∴△AOB∽△COH,
∴,即,
解得x=5,OH=4.5,OB=7.5,
∴BH=BO+OH=12,
∴△BCD的面積=×12×12=72.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+1與拋物線y=x2+bx+c交于A,B(4,5)兩點(diǎn),點(diǎn)A在x軸上.
(1)求拋物線的解析式;
(2)點(diǎn)E是線段AB上一動(dòng)點(diǎn)(點(diǎn)A,B除外),過點(diǎn)E作x軸的垂線交拋物線于點(diǎn)F,當(dāng)線段EF的長(zhǎng)度最大時(shí),求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,拋物線上是否存在一點(diǎn)P,使∠PEF=90°?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“農(nóng)民也能報(bào)銷醫(yī)療費(fèi)了!”這是國(guó)家推行新型農(nóng)村醫(yī)療合作的成果.村民只要每人每年交10元錢,就可以加入合作醫(yī)療,每年先由自己支付醫(yī)療費(fèi),年終時(shí)可得到按一定比例返回的返回款,這一舉措極大地增強(qiáng)了農(nóng)民抵御大病風(fēng)險(xiǎn)的能力.小華與同學(xué)隨機(jī)調(diào)查了他們鄉(xiāng)的一些農(nóng)民,根據(jù)收集到的數(shù)據(jù)繪制了以下的統(tǒng)計(jì)圖.
根據(jù)以上信息,解答以下問題:
(1)本次調(diào)查了 名村民,被調(diào)查的村民中,有 人參加合作醫(yī)療得到了返回款?
(2)若該鄉(xiāng)有10000名村民,請(qǐng)你估計(jì)有多少人參加了合作醫(yī)療?要使兩年后參加合作醫(yī)療的人數(shù)增加到9680人,假設(shè)這兩年的年平均增長(zhǎng)率相同,求年平均增長(zhǎng)率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線()與軸交于點(diǎn),與軸交于,兩點(diǎn),其中點(diǎn)的坐標(biāo)為,拋物線的對(duì)稱軸交軸于點(diǎn),,并與拋物線的對(duì)稱軸交于點(diǎn).現(xiàn)有下列結(jié)論:①;②;③;④.其中所有正確結(jié)論的序號(hào)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)全等的等腰直角三角形,斜邊長(zhǎng)為2,按如圖放置,其中一個(gè)三角形45°角的項(xiàng)點(diǎn)與另一個(gè)三角形的直角頂點(diǎn)A重合,若三角形ABC固定,當(dāng)另一個(gè)三角形繞點(diǎn)A旋轉(zhuǎn)時(shí),它的角邊和斜邊所在的直線分別與邊BC交于點(diǎn)E、F,設(shè)BF=CE=則關(guān)于的函數(shù)圖象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E,BC的延長(zhǎng)線與⊙O的切線AF交于點(diǎn)F.
(1)求證:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE,AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一空曠場(chǎng)地上設(shè)計(jì)一落地為矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m長(zhǎng)的繩子一端固定在B點(diǎn)處,小狗在不能進(jìn)入小屋內(nèi)的條件下活動(dòng),其可以活動(dòng)的區(qū)域面積為S(m2).
(1)如圖1,若BC=4m,則S=_____m2.
(2)如圖2,現(xiàn)考慮在(1)中矩形ABCD小屋的右側(cè)以CD為邊拓展一正△CDE區(qū)域,使之變成落地為五邊形ABCED的小屋,其他條件不變,則在BC的變化過程中,當(dāng)S取得最小值時(shí),邊BC的長(zhǎng)為____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義一種新運(yùn)算:觀察下列式:
1⊙3=1×4+3=7 3⊙(﹣1)=3×4﹣1=11 5⊙4=5×4+4=24 4⊙(﹣3)=4×4﹣3=13
(1)請(qǐng)你想一想:a⊙b= ;
(2)若a≠b,那么a⊙b b⊙a(填入“=”或“≠” )
(3)若a⊙(﹣2b)=3,請(qǐng)計(jì)算 (a﹣b)⊙(2a+b)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
已知實(shí)數(shù)m,n滿足(2m2+n2+1)(2m2+n2-1)=80,試求2m2+n2的值.
解:設(shè)2m2+n2=t,則原方程變?yōu)?/span>(t+1)(t-1)=80,整理得t2-1=80,t2=81,
所以t=土9,因?yàn)?/span>2m2+n2>0,所以2m2+n2=9.
上面這種方法稱為“換元法”,把其中某些部分看成一個(gè)整休,并用新字母代替(即換元),則能使復(fù)雜的問題簡(jiǎn)單化.
根據(jù)以上閱讀材料內(nèi)容,解決下列問題,并寫出解答過程.
(1)已知實(shí)數(shù)x、y,滿足(2x2+2y2+3)(2x2+2y2-3)=27,求x2+y2的值.
(2)已知Rt△ACB的三邊為a、b、c(c為斜邊),其中a、b滿足(a2+b2)(a2+b2-4)=5,求Rt△ACB外接圓的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com