【題目】如圖,已知△ABC.按如下步驟作圖:①以A為圓心,AB長為半徑畫弧;②以C為圓心,CB長為半徑畫弧,兩弧相交于點D;③連結(jié)BD,與AC交于點E,連結(jié)AD,CD
(1)求證:△ABC≌△ADC;
(2)若∠BAC=30°,∠BCA=45°,BC=2;
①求∠BAD所對的弧BD的長;②直接寫出AC的長.
【答案】(1)見解析;(2)① ;② .
【解析】
(1)由“SSS”可證△ABC≌△ADC;
(2)①由題意可得AC垂直平分BD,可得BE=DE,AC⊥BD,由直角三角形的性質(zhì)可得BE=CE=,AB=2BE=2,AE=BE=,由等腰三角形的性質(zhì)可得∠BAD=2∠BAC=60°,由弧長公式可求弧BD的長;
②由AC=AE+CE可求解.
證明:(1)由題意可得AB=AD,BC=CD,
又∵AC=AC
∴△ABC≌△ADC(SSS);
(2)①∵AB=AD,BC=CD
∴AC垂直平分BD
∴BE=DE,AC⊥BD
∵∠BCA=45°,BC=2;
∴BE=CE=,且∠BAC=30°,AC⊥BD
∴AB=2BE=2,AE=BE=
∵AB=AD,AC⊥BD
∴∠BAD=2∠BAC=60°
∴
②∵AC=AE+CE
∴AC=
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=-x2-mx+2m2(m<0)與x軸交于A,B兩點,且點A在點B的左側(cè).
(1)求證:OB=2OA;
(2)若直線y=-x+2與拋物線只有一個公共點,求m的值.
(3)若點C與點O關(guān)于點A對稱,且以點C為圓心,CO為半徑的圓交拋物線于點D,求證:DO平分∠ADB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線與軸、軸分別交于、兩點,拋物線經(jīng)過、兩點,與軸的另一個交點為,且.
(1)求拋物線的解析式;
(2)點在上,點在的延長線上,且,連接交于點,點為第一象限內(nèi)的一點,當是以為斜邊的等腰直角三角形時,連接,設(shè)的長度為,的面積為,請用含的式子表示,并寫出自變量的取值范圍;
(3)在(2)的條件下,連接、,將沿翻折到的位置(與對應(yīng)),若,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖數(shù)軸的A、B、C三點所表示的數(shù)分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點O與A、B的距離分別為4、1,則關(guān)于O的位置,下列敘述何者正確?( 。
A. 在A的左邊 B. 介于A、B之間 C. 介于B、C之間 D. 在C的右邊
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,取格點A、B、C并連接AB,BC.取格點D、E并連接,交AB于點F.
(Ⅰ)AB的長等于_____;
(Ⅱ)若點G在線段BC上,且滿足AF+CG=FG,請在如圖所示的網(wǎng)格中,用無刻度的直尺,確定點G的位置,并簡要說明點G的位置是如何找到的.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(-2,m),B(2,m),C(3,m﹣n)(n>0)在同一個函數(shù)的圖象上,這個函數(shù)可能是( 。
A.y=xB.y=﹣C.y=x2D.y=﹣x2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,經(jīng)過(﹣1,0)、(3,0)、(0,﹣3).
(1)求二次函數(shù)的解析式;
(2)不等式ax2+bx+c>0的解集為 ;
(3)方程ax2+bx+c=m有兩個實數(shù)根,m的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面內(nèi),給定不在同一條直線上的點(如圖所示),點到點的距離均等于(為常數(shù)),到點的距離等于的所有點組成圖形,的平分線交圖形于點,連接.
(1)求證:;
(2)過點作,垂足為,作,垂足為,延長交圖形于點,連接.若,求直線與圖形的公共點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com