【題目】如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,取格點(diǎn)A、B、C并連接AB,BC.取格點(diǎn)DE并連接,交AB于點(diǎn)F

(Ⅰ)AB的長等于_____

(Ⅱ)若點(diǎn)G在線段BC上,且滿足AF+CGFG,請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,確定點(diǎn)G的位置,并簡(jiǎn)要說明點(diǎn)G的位置是如何找到的.

【答案】(Ⅰ) ;(Ⅱ)見解析,取格點(diǎn)M,連接AM,CM,得到正方形AMCB,取格點(diǎn)N,連接NM,EN,可得等腰直角三角形△EMN,∠EMN45°,直線MNBC于點(diǎn)G,點(diǎn)G即為所求.

【解析】

)利用勾股定理計(jì)算即可.

)取格點(diǎn)M,連接AM,CM,得到正方形AMCB,取格點(diǎn)N,連接NM,EN,可得等腰直角三角形△EMN,∠EMN45°,直線MNBC于點(diǎn)G,點(diǎn)G即為所求.

解:(Ⅰ)AB

故答案為

(Ⅱ)取格點(diǎn)M,連接AM,CM,得到正方形AMCB,取格點(diǎn)N,連接NMEN,可得等腰直角三角形△EMN,∠EMN45°直線MNBC于點(diǎn)G,

△MAF旋轉(zhuǎn)得到△MCF’,故AF=CF’

∠EMN45°易證△MGF△MF’G

AF+CGCF’+CG=GF’=GF,

故點(diǎn)G即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電視臺(tái)的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機(jī)分選游戲雙方的組員,主持人設(shè)計(jì)了以下游戲:用不透明的白布包住三根顏色長短相同的細(xì)繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細(xì)繩,并拉出,若兩人選中同一根細(xì)繩,則兩人同隊(duì),否則互為反方隊(duì)員.

(1)若甲嘉賓從中任意選擇一根細(xì)繩拉出,求他恰好抽出細(xì)繩AA1的概率;

(2)請(qǐng)用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊(duì)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】窯溝村對(duì)第一季度A、B兩種水果的銷售情況進(jìn)行統(tǒng)計(jì),兩種水果的銷售量如圖所示.

1)第一季度B種水果的月平均銷售量是多少噸?

2)一月A種水果的銷售量是50噸,到三月A種水果的銷售量是72噸,第一季度A種水果的銷售量的月平均增長率相同,求二月A種水果銷售了多少噸?

3)根據(jù)以上信息,請(qǐng)將統(tǒng)計(jì)圖補(bǔ)充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形ABCD中,E是AD的中點(diǎn),以點(diǎn)E直角頂點(diǎn)的直角三角形EFG的兩邊EF,EG分別過點(diǎn)B,C,∠F=30°.

(1)求證:BE=CE

(2)將△EFG繞點(diǎn)E按順時(shí)針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到EF與AD重合時(shí)停止轉(zhuǎn)動(dòng).若EF,EG分別與AB,BC相交于點(diǎn)M,N.(如圖2)

①求證:△BEM≌△CEN;

②若AB=2,求△BMN面積的最大值;

③當(dāng)旋轉(zhuǎn)停止時(shí),點(diǎn)B恰好在FG上(如圖3),求sin∠EBG的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC.按如下步驟作圖:①以A為圓心,AB長為半徑畫。虎谝C為圓心,CB長為半徑畫弧,兩弧相交于點(diǎn)D;③連結(jié)BD,與AC交于點(diǎn)E,連結(jié)AD,CD

1)求證:△ABC≌△ADC;

2)若∠BAC30°,∠BCA45°,BC2

①求∠BAD所對(duì)的弧BD的長;②直接寫出AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點(diǎn)A,點(diǎn)C,過點(diǎn)AABx軸,垂足為點(diǎn)A,過點(diǎn)CCBy軸,垂足為點(diǎn)C,兩條垂線相交于點(diǎn)B.

(1)線段AB,BC,AC的長分別為AB=   ,BC=   ,AC=   ;

(2)折疊圖1中的ABC,使點(diǎn)A與點(diǎn)C重合,再將折疊后的圖形展開,折痕DEAB于點(diǎn)D,交AC于點(diǎn)E,連接CD,如圖2.

請(qǐng)從下列A、B兩題中任選一題作答,我選擇   題.

A:①求線段AD的長;

②在y軸上,是否存在點(diǎn)P,使得APD為等腰三角形?若存在,請(qǐng)直接寫出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

B:①求線段DE的長;

②在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得以點(diǎn)A,P,C為頂點(diǎn)的三角形與ABC全等?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,EAC上一點(diǎn),且AE=AB,∠BAC=2EBC ,以AB為直徑的⊙OAC于點(diǎn)D,交EB于點(diǎn)F

1)求證:BC與⊙O相切;

2)若AB=8,BE=4,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(題文)1978年,以中共十一屆三中全會(huì)為標(biāo)志,中國開啟了改革開放歷史征程.40年眾志成城,40年砥礪奮進(jìn),40年春風(fēng)化雨,中國人民用雙手書寫了國家和民族發(fā)展的壯麗史詩下圖是1994—2017年三次產(chǎn)業(yè)對(duì)GDP的貢獻(xiàn)率統(tǒng)計(jì)圖(三次產(chǎn)業(yè)是指:第一產(chǎn)業(yè)是指農(nóng)、林、牧、漁業(yè)(不含農(nóng)、林、牧、漁服務(wù)業(yè));第二產(chǎn)業(yè)是指采礦業(yè)(不含開采輔助活動(dòng)),制造業(yè)(不含金屬制品、機(jī)械和設(shè)備修理業(yè)),電力、熱力、燃?xì)饧八a(chǎn)和供應(yīng)業(yè),建筑業(yè);第三產(chǎn)業(yè)即服務(wù)業(yè),是指除第一產(chǎn)業(yè)、第二產(chǎn)業(yè)以外的其他行業(yè)).下列推斷不合理的是( )

A. 2014年,第二、三產(chǎn)業(yè)對(duì)GDP的貢獻(xiàn)率幾乎持平;

B. 改革開放以來,整體而言三次產(chǎn)業(yè)對(duì)GDP的貢獻(xiàn)率都經(jīng)歷了先上升后下降的過程;

C. 第三產(chǎn)業(yè)對(duì)GDP的貢獻(xiàn)率增長速度最快的一年是2001年;

D. 2006年,第二產(chǎn)業(yè)對(duì)GDP的貢獻(xiàn)率大約是第一產(chǎn)業(yè)對(duì)GDP的貢獻(xiàn)率的10倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次籃球比賽中,如圖隊(duì)員甲正在投籃.已知球出手時(shí)離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時(shí)達(dá)到最大高度4 m,設(shè)籃球運(yùn)行軌跡為拋物線,籃圈距地面3 m.

(1)建立如圖所示的平面直角坐標(biāo)系,問此球能否準(zhǔn)確投中?

(2)此時(shí),對(duì)方隊(duì)員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?

查看答案和解析>>

同步練習(xí)冊(cè)答案