【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(10,0),以O(shè)A為直徑在第一象限內(nèi)作半圓C,點(diǎn)B是該半圓周上的一動(dòng)點(diǎn),連結(jié)OB、AB,并延長(zhǎng)AB至點(diǎn)D,使DB=AB,過(guò)點(diǎn)D作x軸垂線,分別交x軸、直線OB于點(diǎn)E、F,點(diǎn)E為垂足,連結(jié)CF.

(1)當(dāng)∠AOB=30°時(shí),求弧AB的長(zhǎng);

(2)當(dāng)DE=8時(shí),求線段EF的長(zhǎng);

(3)在點(diǎn)B運(yùn)動(dòng)過(guò)程中,是否存在以點(diǎn)E、C、F為頂點(diǎn)的三角形與△AOB相似,若存在,請(qǐng)求出此時(shí)點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】;3;存在

【解析】

試題分析:(1)連結(jié)BC,

∵A(10,0),∴OA=10,CA=5,

∵∠AOB=30°,

∴∠ACB=2∠AOB=60°,

∴弧AB的長(zhǎng)=;……4分

(2)連結(jié)OD,

∵OA是⊙C直徑,∴∠OBA=90°,

又∵AB=BD,

∴OB是AD的垂直平分線,

∴OD=OA=10,

在Rt△ODE中,

OE=,

∴AE=AO-OE=10-6=4,

由∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA,

得△OEF∽△DEA,

,即,∴EF=3;……8分

(3)設(shè)OE=x,

①當(dāng)交點(diǎn)E在O,C之間時(shí),由以點(diǎn)E、C、F為頂點(diǎn)的三角形與△AOB相似,有∠ECF=∠BOA或∠ECF=∠OAB,當(dāng)∠ECF=∠BOA時(shí),此時(shí)△OCF為等腰三角形,點(diǎn)E為OC中點(diǎn),即OE=,

∴E1(,0);

當(dāng)∠ECF=∠OAB時(shí),有CE=5-x,AE=10-x,

∴CF∥AB,有CF=,

∵△ECF∽△EAD,

,即,解得:,

∴E2(,0);

②當(dāng)交點(diǎn)E在點(diǎn)C的右側(cè)時(shí),

∵∠ECF>∠BOA,

∴要使△ECF與△BAO相似,只能使∠ECF=∠BAO,

連結(jié)BE,

∵BE為Rt△ADE斜邊上的中線,

∴BE=AB=BD,

∴∠BEA=∠BAO,

∴∠BEA=∠ECF,

∴CF∥BE,∴,

∵∠ECF=∠BAO,∠FEC=∠DEA=Rt∠,

∴△CEF∽△AED,∴,

AD=2BE,∴,

,解得,<0(舍去),

∴E3(,0);

③當(dāng)交點(diǎn)E在點(diǎn)O的左側(cè)時(shí),

∵∠BOA=∠EOF>∠ECF.

∴要使△ECF與△BAO相似,只能使∠ECF=∠BAO

連結(jié)BE,得BE==AB,∠BEA=∠BAO

∴∠ECF=∠BEA,

∴CF∥BE,

,

又∵∠ECF=∠BAO,∠FEC=∠DEA=Rt∠,

∴△CEF∽△AED,∴,

而AD=2BE,∴,

,解得,<0(舍去),

∵點(diǎn)E在x軸負(fù)半軸上,∴E4(,0),

綜上所述:存在以點(diǎn)E、C、F為頂點(diǎn)的三角形與△AOB相似,此時(shí)點(diǎn)E坐標(biāo)為:

,0)、,0)、,0)、,0).(12分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,BDAC于點(diǎn)DFGAC于點(diǎn)G,∠1=∠2,試證明:∠ADE=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,使點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在邊上,點(diǎn)的對(duì)應(yīng)點(diǎn)為,連接.下列結(jié)論一定正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AEBC,F(xiàn)GBC,1=2,D=3+60°,CBD=70°.

(1)求證:ABCD;

(2)求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1.格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)的坐標(biāo)分別是

(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;

(2)請(qǐng)畫出關(guān)于軸對(duì)稱的;

(3)請(qǐng)?jiān)?/span>軸上求作一點(diǎn),使的周長(zhǎng)最小,并寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)(-1,y1),(2,y2),(3,y3)在反比例函數(shù)的圖象上.下列結(jié)論中正確的是( )

A. y1y2y3 B. y1y3y2 C. y3y1y2 D. y2y3y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x,y的方程組

1請(qǐng)直接寫出方程的所有正整數(shù)解

2若方程組的解滿足x+y=0,m的值

3無(wú)論實(shí)數(shù)m取何值,方程x2y+mx+5=0總有一個(gè)固定的解,請(qǐng)直接寫出這個(gè)解?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A4,2)、Bn,4)兩點(diǎn)是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個(gè)交點(diǎn).

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)求AOB的面積;

3)觀察圖象,直接寫出不等式kx+b0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)計(jì)算:

-10 - -31

(﹣×

(-2)2×5+(-2)3÷4

2)比較大小

1.54 2-7

3)用簡(jiǎn)便方法計(jì)算:

查看答案和解析>>

同步練習(xí)冊(cè)答案