【題目】如圖,已知直線和直線,過點軸,交直線于點A,若點Px軸上的一個動點,過點P作平行于y軸的直線,分別與、交于點C、D,連接ADBC

直接寫出線段______

當(dāng)P的坐標(biāo)是時,求直線BC的解析式;

的面積與的面積相等,求點P的坐標(biāo).

【答案】(1) ;(2) y=-2x+4; (3) (1,0)(-1,0).

【解析】

且點A在直線上,點B的坐標(biāo)為所以求出點A的坐標(biāo)即可求AB;

軸于點P,點,點C在直線上,即可以求出點C的坐標(biāo),即可用待定系數(shù)法求直線BC的解析式;

的面積與的面積相等,即時兩三角形的面積相等,設(shè)點,則有,即可求出點P的坐標(biāo).

解:且點A在直線上,

代入,得,

;

軸,

代入,得,故點C的坐標(biāo)為,

設(shè)直線BC的解析式為:,將點C,點B代入得:

,解得,

故直線BC的解析式為:;

由題意得,當(dāng)時,,

設(shè)點P的坐標(biāo)為

,解得

點P的坐標(biāo)為.

故答案為:(1) (2) y=-2x+4;(3) (1,0)(-1,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),公路上有A、B、C三個車站,一輛汽車從A站以速度v1勻速駛向B站,到達(dá)B站后不停留,以速度v2勻速駛向C站,汽車行駛路程y(千米)與行駛時間x(小時)之間的函數(shù)圖象如圖(2)所示.

1)當(dāng)汽車在A、B兩站之間勻速行駛時,求yx之間的函數(shù)關(guān)系式及自變量的取值范圍;

2)求出v2的值;

3)若汽車在某一段路程內(nèi)剛好用50分鐘行駛了90千米,求這段路程開始時x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)如今,通過“微信運動“發(fā)布自己每天行走的步數(shù),已成為一種時尚,“健身達(dá)人”小華為了了解他的微信朋友圈里大家的“建步走運動“情況,隨機(jī)抽取了20名好友一天行走的步數(shù),記錄如下:

5640

6430

6320

6798

7325

8430

8215

7453

7446

6754

7638

6834

7325

6830

8648

8753

9450

9865

7290

7850

對這20個數(shù)據(jù)按組距1000進(jìn)行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:

組別

步數(shù)分組

頻數(shù)

A

5500x6500

2

B

6500x7500

10

C

7500x8500

m

D

8500x9500

2

E

9500x10500

n

請根據(jù)以上信息解答下列問題:

(1)填空:m   n   

(2)補(bǔ)全頻數(shù)分布直方圖.

(3)根據(jù)以上統(tǒng)計結(jié)果,第二天小華隨機(jī)查看一名好友行走的步數(shù),試估計該好友的步數(shù)不低于7500(7500)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD為等邊△ABC的高,EF分別為線段AD、AC上的動點,且AECF,當(dāng)BF+CE取得最小值時,∠AFB=( 。

A. 112.5°B. 105°C. 90°D. 82.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請將下列證明過程補(bǔ)充完整:

已知:如圖,AE平分∠BAC,CE平分∠ACD,且∠α+∠β90°.

求證:ABCD.

證明:∵CE平分∠ACD (已知),

∴∠ACD2α(______________________)

AE平分∠BAC (已知),

∴∠BAC_________(______________________)

∵∠α+∠β90°(已知),

2α2β180°(等式的性質(zhì))

∴∠ACD+∠BAC==_________(______________________)

ABCD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BAD≌△BCE,∠BAD=∠BCE90°,∠ABD=∠BEC30°,點 M DE的中點,過點EAD平行的直線交射線AM于點 N

1)如 1,當(dāng) AB、E三點在同一直線上時,

①求證:MENMDA;

②判斷 AC CN數(shù)量關(guān)系為_______,并說明理由.

2)將圖 1 BCE B 逆時針旋轉(zhuǎn)一周,旋轉(zhuǎn)過程中CAN 能否為等腰直角三角形?若能,直接寫出旋轉(zhuǎn)角度;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個正整數(shù)能表示成兩個連續(xù)偶數(shù)的平方差,那么這個正整數(shù)為“神秘數(shù)”.

如:

因此,4,12,20這三個數(shù)都是神秘數(shù).

(1)282012這兩個數(shù)是不是神秘數(shù)?為什么?

(2)設(shè)兩個連續(xù)偶數(shù)為(其中為非負(fù)整數(shù)),由這兩個連續(xù)偶數(shù)構(gòu)造的神秘數(shù)是4的倍數(shù),請說明理由.

(3)兩個連續(xù)奇數(shù)的平方差(取正數(shù))是不是神秘數(shù)?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,四邊形中,,,,且,

試求:(1的度數(shù);(2)四邊形的面積(結(jié)果保留根號);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點B、C、D在同一條直線上,ABCCDE都是等邊三角形.BEACF,ADCEH,

(1)求證:BCE≌△ACD

(2)求證:FC=HC

(3)求證:FHBD

查看答案和解析>>

同步練習(xí)冊答案