【題目】在等邊三角形ABC中,E為直線AB上一點,連接EC.ED與直線BC交于點D,ED=EC.
(1)如圖1,AB=1,點E是AB的中點,求BD的長;
(2)點E是AB邊上任意一點(不與AB邊的中點和端點重合),依題意,將圖2補全,判斷AE與BD間的數(shù)量關系并證明;
(3)點E不在線段AB上,請在圖3中畫出符合條件的一個圖形.
【答案】(1)BD=;(2)圖2補全見解析,DB=AE成立;理由見解析;(3)如圖3所示.見解析.
【解析】
(1)根據(jù)等邊三角形的性質(zhì)得到∠BCE=∠ACB=30°,根據(jù)等腰三角形的性質(zhì)得到∠D=∠BCE=30°,于是得到結(jié)論;
(2)過點E作EF∥BC,交AC于F,先證明△AEF是等邊三角形,得出AE=EF,再證明△DBE≌△EFC,得出DB=EF,即可證出AE=DB;
(3)根據(jù)題意作出圖形即可.
(1)∵△ABC是等邊三角形,點E是AB的中點,
∴∠BCE=∠ACB=30°,
∵ED=EC,
∴∠D=∠BCE=30°,
∵∠ABC=∠D+∠DEB=60°,
∴∠DEB=∠D=30°,
∴BD=BE=AB=;
(2)DB=AE成立;理由如下:
如圖2,過點E作EF∥BC,交AC于F,則∠AEF=∠ABC,∠AFE=∠ACB,∠CEF=∠ECD,
∵∠A=∠ABC=∠ACB=60°,
∴∠A=∠AEF=∠AFE=60°,
∠DBE=120°,
∴△AEF是等邊三角形,∴AE=EF,∠EFC=120°,
∴BE=CF,∠DBE=∠EFC,
∵ED=EC,
∴∠D=∠ECD,
∴∠D=∠CEF,
在△DBE和△EFC中,
,
∴△DBE≌△EFC(AAS),
∴DB=EF,
∴AE=DB;
(3)如圖3所示.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法不正確的是( 。
A. 所有矩形都是相似的
B. 若線段a=5cm,b=2cm,則a:b=5:2
C. 若線段AB=cm,C是線段AB的黃金分割點,且AC>BC,則AC= cm
D. 四條長度依次為lcm,2cm,2cm,4cm的線段是成比例線段
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖 1,在△ABC 中,∠ACB=90°,BC=AC,點 D 在 AB 上,DE⊥AB交 BC 于 E,點 F 是 AE 的中點
(1) 寫出線段 FD 與線段 FC 的關系并證明;
(2) 如圖 2,將△BDE 繞點 B 逆時針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段 FD 與線段 FC 的關系是否變化,寫出你的結(jié)論并證明;
(3) 將△BDE 繞點 B 逆時針旋轉(zhuǎn)一周,如果 BC=4,BE=2,直接寫出線段 BF 的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了了解九年級學生體能狀況,從九年級學生中隨機抽取部分學生進行體能測試,測試結(jié)果分為A,B,C,D四個等級,并依據(jù)測試成績繪制了如下兩幅尚不完整的統(tǒng)計圖;
(1)這次抽樣調(diào)查的樣本容量是 ,并補全條形圖;
(2)D等級學生人數(shù)占被調(diào)查人數(shù)的百分比為 ,在扇形統(tǒng)計圖中C等級所對應的圓心角為 °;
(3)該校九年級學生有1500人,請你估計其中A等級的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,過原點O的直線l1與雙曲線的一個交點為A(1,m).
(1)求直線l1的表達式;
(2)過動點P(n,0)(n>0)且垂直于x軸的直線與直線l1和雙曲線的交點分別為B,C,當點B位于點C上方時,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點A,點C,過點A作AB⊥x軸,垂足為點A,過點C作CB⊥y軸,垂足為點C,兩條垂線相交于點B.
(1)線段AB,BC,AC的長分別為AB= ,BC= ,AC= ;
(2)折疊圖1中的△ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DE交AB于點D,交AC于點E,連接CD,如圖2.
請從下列A、B兩題中任選一題作答,我選擇 題.
A:①求線段AD的長;
②在y軸上,是否存在點P,使得△APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標;若不存在,請說明理由.
B:①求線段DE的長;
②在坐標平面內(nèi),是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】居民區(qū)內(nèi)的“廣場舞”引起媒體關注,遼寧都市頻道為此進行過專訪報道.小平想了解本小區(qū)居民對“廣場舞”的看法,進行了一次抽樣調(diào)查,把居民對“廣場舞”的看法分為四個層次:A.非常贊同;B.贊同但要有時間限制;C.無所謂;D.不贊同.并將調(diào)查結(jié)果繪制了圖1和圖2兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息解答下列問題:
(1)求本次被抽查的居民有多少人?
(2)將圖1和圖2補充完整;
(3)求圖2中“C”層次所在扇形的圓心角的度數(shù);
(4)估計該小區(qū)4000名居民中對“廣場舞”的看法表示贊同(包括A層次和B層次)的大約有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用32m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB=xm.
(1)若花園的面積為252m2,求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是17m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),求花園面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級為了解學生課堂發(fā)言情況,隨機抽取該年級部分學生,對他們某天在課堂上發(fā)言的次數(shù)進行了統(tǒng)計,其結(jié)果如下表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖,已知B、E兩組發(fā)言人數(shù)的比為5:2,請結(jié)合圖中相關數(shù)據(jù)回答下列問題:
(1)則樣本容量容量是______________,并補全直方圖;
(2)該年級共有學生500人,請估計全年級在這天里發(fā)言次數(shù)不少于12的次數(shù);
(3)已知A組發(fā)言的學生中恰有1位女生,E組發(fā)言的學生中有2位男生,現(xiàn)從A組與E組中分別抽一位學生寫報告,請用列表法或畫樹狀圖的方法,求所抽的兩位學生恰好是一男一女的概率。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com