精英家教網 > 初中數學 > 題目詳情

【題目】在數學活動課上,小明提出這樣一個問題:∠B=∠C90°,EBC的中點,DE平分∠ADC,∠CDE55°.如圖,則∠EAB的度數為_________

【答案】35°

【解析】

過點EEFADF,根據角平分線上的點到角的兩邊的距離相等可得CE=EF,再根據到角的兩邊距離相等的點在角的平分線上可得AE是∠BAD的平分線,然后求出∠AEB,再根據直角三角形兩銳角互余求解即可.

過點EEFADF

DE平分∠ADC,∴CE=EF

EBC的中點,∴CE=BE,∴BE=EF,∴AE是∠BAD的平分線,∴∠EAB=FAE

∵∠B=C=90°,∴∠CDA+DAB=180°,∴2CDE+2EAB=180°,∴∠CDE+EAB=90°,∴∠EAB=90°-∠CDE=90°-55°=35°.

故答案為:35°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在六邊形ABCDEF中,∠A+F+E+D =,∠ABC的平分線與∠BCD的平分線交于點P,則∠P度數為(

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知正方形ABCD的邊長為4,一個以點A為頂點的45°角繞點A旋轉,角的兩邊分別與BC、DC的延長線交于點E、F,連接EF,設CE=a,CF=b.

(1)如圖1,當a=4時,求b的值;

(2)當a=4時,如圖2,求出b的值;

(3)如圖3,請寫出EAF繞點A旋轉的過程中a、b滿足的關系式,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,梯形ABCD中,,且AD3,對角線ACBD交于點O,那么______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場用13000元購進甲、乙兩種礦泉水共400箱,礦泉水的成本價與銷售價如下表所示:

類別

成本價/(元·

銷售價/(元·

25

35

35

48

求:(1)購進甲、乙兩種礦泉水各多少箱?

2)該商場售完這400箱礦泉水,可獲利多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,ABAC10,點D是邊BC上一動點(不與B,C重合),ADEBα,DEAC于點E,且cosα.下列結論:①△ADE∽△ACD;BD6時,ABDDCE全等;③△DCE為直角三角形時,BD8;0CE≤6.4.其中正確的結論是______________.(填序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,A、B兩地之間有一座山,汽車原來從A地到B地經過C地沿折線A→C→B行駛,現開通隧道后,汽車直接沿直線AB行駛.已知AC=10千米,A=30°,B=45°.則隧道開通后,汽車從A地到B地比原來少走多少千米?(結果保留根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(題文)如圖,已知正方形ABCD,點E是BC邊的中點,DE與AC相交于點F,連接BF,下列結論:①SABF=SADF;②SCDF=2SCEF;③SADF=2SCEF;④SADF=2SCDF,其中正確的是( 。

A. ①②③ B. ②③ C. ①④ D. ①②④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為A(0,a),B(b,a),且a、b滿足(a﹣2)2+|b﹣4|=0,現同時將點A,B分別向下平移2個單位,再向左平移1個單位,分別得到點A,B的對應點C,D,連接AC,BD,AB.

(1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABCD;

(2)在y軸上是否存在一點M,連接MC,MD,使SMCD=S四邊形ABDC?若存在這樣一點,求出點M的坐標,若不存在,試說明理由;

(3)點P是直線BD上的一個動點,連接PA,PO,當點PBD上移動時(不與B,D重合),直接寫出∠BAP、DOP、APO之間滿足的數量關系.

查看答案和解析>>

同步練習冊答案