【題目】如圖,ABC中,∠BAC60°,∠B45°AB2,點(diǎn)DBC上的一個動點(diǎn),點(diǎn)D關(guān)于AB,AC的對稱點(diǎn)分別是點(diǎn)E,F,四邊形AEGF是平行四邊形,則四邊形AEGF面積的最小值是

A. 1B. C. D.

【答案】D

【解析】

由對稱的性質(zhì)和菱形的定義證出四邊形AEGF是菱形,得出∠EAF=2BAC=120°,當(dāng)ADBC最小時,AD的值最小,即AE的值最小,即菱形AEGF面積最小,求出AD=,即可得出四邊形AEGF的面積的最小值.

由對稱的性質(zhì)得:AE=AD=AF
∵四邊形AEGF是平行四邊形,
∴四邊形AEGF是菱形,
∴∠EAF=2BAC=120°,
當(dāng)ADBC最小時,AD的值最小,即AE的值最小,即菱形AEGF面積最小,
∵∠ABC=45°,AB=2,
AD=
∴四邊形AEGF的面積的最小值=

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,梯形ABCD中,AB//CD,且AB=2CDE,F分別是AB,BC的中點(diǎn).

EFBD相交于點(diǎn)M

1)求證:△EDM∽△FBM;

2)若DB=9,求BM

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點(diǎn)D,交CA的延長線于點(diǎn)E,過點(diǎn)DDH⊥AC于點(diǎn)H,連接DE交線段OA于點(diǎn)F.

(1)求證:DH是圓O的切線;

(2)若,求證:A為EH的中點(diǎn).

(3)若EA=EF=1,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條“折線數(shù)軸”.圖中點(diǎn)A表示﹣6,點(diǎn)B表示8,點(diǎn)C表示16,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距22個長度單位.動點(diǎn)P從點(diǎn)A出發(fā),以1單位/秒的速度沿著“折線數(shù)軸”的正方向運(yùn)動,從點(diǎn)O運(yùn)動到點(diǎn)B期間速度變?yōu)樵瓉淼囊话耄罅⒖袒謴?fù)原速:同時,動點(diǎn)Q從點(diǎn)C出發(fā),以2單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動,從點(diǎn)B運(yùn)動到點(diǎn)O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢?fù)原速.設(shè)運(yùn)動的時間為t秒.

1)動點(diǎn)P從點(diǎn)A運(yùn)動至C點(diǎn)需要多少時間?

2P、Q兩點(diǎn)相遇時,求出相遇點(diǎn)M所對應(yīng)的數(shù)是多少;

3)求當(dāng)t為何值時,P、O兩點(diǎn)在數(shù)軸上相距的長度與QB兩點(diǎn)在數(shù)軸上相距的長度相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直角三角形ABC中,∠C=90°,將△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)至△AED,使點(diǎn)C的對應(yīng)點(diǎn)D恰好落在邊AB上,E為點(diǎn)B的對應(yīng)點(diǎn).設(shè)∠BACα,則∠BED______.(用含α的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖的數(shù)陣是由全體奇數(shù)排成:

(1)圖中平行四邊形框內(nèi)的九個數(shù)之和與中間的數(shù)有什么關(guān)系?

(2)在數(shù)陣圖中任意作一類似(1)中的平行四邊形框,這九個數(shù)之和還有這種規(guī)律嗎?請說出理由;

(3)這九個數(shù)之和能等于1998嗎?2005,1017呢?若能,請寫出這九個數(shù)中最小的一個;若不能,請說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,∠B=90°,AB=16cm,BC=12cm,P、QABC邊上的兩個動點(diǎn),其中點(diǎn)P從點(diǎn)A開始沿A→B方向運(yùn)動,且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始沿B→C→A方向運(yùn)動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.

1)出發(fā)2秒后,求PQ的長.

2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動時,出發(fā)幾秒鐘后,PQB能形成等腰三角形?

3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動時,求能使BCQ成為等腰三角形的運(yùn)動時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)A所表示的數(shù)是,點(diǎn)B在點(diǎn)A的右側(cè),AB=6;點(diǎn)CAB之間, AC=2BC

1)在數(shù)軸上描出點(diǎn)B;

2)求點(diǎn)C所表示的數(shù),并在數(shù)軸上描出點(diǎn)C;

3)已知在數(shù)軸上存在點(diǎn)P,使PA+PC=PB,求點(diǎn)P所表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,相距千米的兩地間有一條筆直的馬路,地位于兩地之間且距千米,小明同學(xué)騎自行車從地出發(fā)沿馬路以每小時千米的速度向地勻速運(yùn)動,當(dāng)?shù)竭_(dá)地后立即以原來的速度返回,到達(dá)地停止運(yùn)動,設(shè)運(yùn)動時間為(),小明的位置為點(diǎn).

(1)當(dāng)時,求點(diǎn)間的距離

(2)當(dāng)小明距離千米時,直接寫出所有滿足條件的

(3)在整個運(yùn)動過程中,求點(diǎn)與點(diǎn)的距離(用含的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊答案