【題目】如圖,拋物線的頂點為C,對稱軸為直線,且經(jīng)過點A(3,-1),與y軸交于點B.

(1)求拋物線的解析式;

(2)判斷ABC的形狀,并說明理由;

(3)經(jīng)過點A的直線交拋物線于點P,交x軸于點Q,若,試求出點P的坐標.

【答案】(1);(2)△ABC是直角三角形,理由見解析;(3)點P的坐標為、

【解析】分析:(1)利用待定系數(shù)法,聯(lián)立方程組即可解得;(2)利用解析式,可得B(0,2),C(1,3),再由A(3,-1),求出AB,AC,BC ,利用勾股定理的逆定理即可得出結(jié)果;(3)分兩種情況討論:當點Q在線段AP上時,當點QPA延長線上時,可得點P的坐標.

本題解析:

(1)由題意得:, 解得:

∴拋物線的解析式為

(2)由得:當時,y=2.,∴,由得,

A(3,-1),∴,∴

∴∠ABC=90°,∴△ABC是直角三角形.

(3)①如圖,當點Q在線段AP上時,過點PPEx軸于點E,ADx軸于點D

,∴PA=2AQ,∴PQ=AQ

PEAD∴△PQE∽△AQD,

,∴PE=AD=1

得:

P

②如圖,當點QPA延長線上時,過點PPExE,ADx軸于點D

,∴PA=2AQ,∴PQ=3AQ

PEAD,∴△PQE∽△AQD,

,∴PE=3AD=3

得:,∴P.

綜上可知:點P的坐標為、

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣2x2+bx+c的圖象經(jīng)過點A04)和B1,﹣2).

1)求此拋物線的解析式;

2)求此拋物線的對稱軸和頂點坐標;

3)設拋物線的頂點為C,試求△CAO的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】自2016年國慶后,許多高校均投放了使用手機就可隨用的共享單車.某運營商為提高其經(jīng)營的A品牌共享單車的市場占有率,準備對收費作如下調(diào)整:一天中,同一個人第一次使用的車費按0.5元收取,每增加一次,當次車費就比上次車費減少0.1元,第6次開始,當次用車免費.具體收費標準如下:

使用次數(shù)

0

1

2

3

4

5(含5次以上)

累計車費

0

0.5

0.9

1.5

同時,就此收費方案隨機調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):

使用次數(shù)

0

1

2

3

4

5

人數(shù)

5

15

10

30

25

15

)寫出的值;

)已知該校有5000名師生,且A品牌共享單車投放該校一天的費用為5800元.試估計:收費調(diào)整后,此運營商在該校投放A品牌共享單車能否獲利? 說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在山腳的A處測得山頂D的仰角為45°,沿著坡度為30°的斜角前進400米處到B處(即∠BAC=30°,AB=400米),測得D的仰角為60°,求山的高度CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】聳立在臨清市城北大運河東岸的舍利寶塔,是“運河四大名塔”之一(如圖1).數(shù)學興趣小組的小亮同學在塔上觀景點P處,利用測角儀測得運河兩岸上的A,B兩點的俯角分別為17.9°,22°,并測得塔底點C到點B的距離為142米(A、B、C在同一直線上,如圖2),求運河兩岸上的A、B兩點的距離(精確到1米).(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin17.9°≈0.31,cos17.9°≈0.95,tan17.9°≈0.32)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,BAC=90°,AB=ACDABC外一點,且AD=AC,則BDC的度數(shù)為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若拋物線yx23x+cy軸的交點為(0,2),則下列說法正確的是( 。

A. 拋物線開口向下

B. 拋物線與x軸的交點為(﹣10),(30

C. x1時,y有最大值為0

D. 拋物線的對稱軸是直線x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個鋼筋三角架三邊長分別為,,現(xiàn)在要做一個和它相似的鋼筋三角架,而只有長為的兩根鋼筋,要求以其中的一根為一邊,從另一根上截兩段(允許有余料)作為另兩邊,則不同的截法有( )

A. 一種 B. 兩種 C. 三種 D. 四種或四種以上

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與x軸的兩個交點分別為(﹣10),(3,0),對于下列結(jié)論:①2a+b=0;②abc0;③a+b+c0;④當x1時,yx的增大而減。黄渲姓_的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案