【題目】如圖,△ABC中,AD是高,BE平分∠ABC.
(1)若∠EBC=32°,∠1∶∠2=1∶2,EF∥AD,求∠FEC的度數(shù).
(2)若∠2=50°,點F為射線CB上的一個動點,當(dāng)△EFC為鈍角三角形時,直接寫出∠FEC的取值范圍.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在□ABCD中,O是AC、BD的交點,過點O 與AC垂直的直線交邊AD于點E,若□ABCD的周長為22cm,則△CDE的周長為( ).
A. 8cm B. 10cm C. 11cm D. 12cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若正方形ABCD的邊長為4,E為BC邊上一點,BE=3,M為線段AE上一點,射線BM交正方形的一邊于點F,且BF=AE,則BM的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點H,請你添加一個適當(dāng)?shù)臈l件:_____,使△AEH≌△CEB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一項工程,甲,乙兩公司合做,12天可以完成,共需付施工費102000元;如果甲,乙兩公司單獨完成此項工程,乙公司所用時間是甲公司的1.5倍,乙公司每天的施工費比甲公司每天的施工費少1500元.
(1)甲,乙兩公司單獨完成此項工程,各需多少天?
(2)若讓一個公司單獨完成這項工程,哪個公司的施工費較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸為x=﹣1的拋物線y=ax2+bx+c(a≠0)與x軸相交于A、B兩點,其中點A的坐標(biāo)為(﹣3,0).
(1)求點B的坐標(biāo).
(2)已知a=1,C為拋物線與y軸的交點.
①若點P在拋物線上,且S△POC=4S△BOC , 求點P的坐標(biāo).
②設(shè)點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先仔細(xì)閱讀材料,再解決問題:
完全平方式x2±2xy+y2=(x±y)2以及(x±y)2的值為非負(fù)數(shù)的特點在數(shù)學(xué)學(xué)習(xí)中有廣泛的應(yīng)用,比如探求2x2+12x﹣4的最大(。┲禃r,我們可以配成完全平方式來解決:
解:原式=2(x2+6x﹣2)=2(x2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22.
∵無論x取什么數(shù),都有(x+3)2≥0,∴(x+3)2的最小值為0;
∴x=﹣3時,2(x+3)2﹣22的最小值是2×0﹣22=﹣22;
∴當(dāng)x=﹣3時,2x2+12x﹣4的最小值是﹣22.
請根據(jù)上面的解題思路,解答下列問題:
(1)多項式3x2﹣6x+12的最小值是多少,并寫出對應(yīng)的x的值;
(2)判斷多項式有最大值還是最小值,請你說明理由并求出當(dāng)x為何值時,此多項式的最大值(或最小值)是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一組密碼的一部分.為了保密,許多情況下可采用不同的密碼,請你運用所學(xué)知識找到破譯的“鑰匙”.目前,已破譯出“今年考試”的真實意思是“努力發(fā)揮”.若“今”所處的位置為(x,y),你找到的密碼鑰匙是 ,破譯“正做數(shù)學(xué)”的真實意思是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線AB與直線CD相交于點O,OE平分.
(1)如圖①,若,求的度數(shù);
(2)如圖②,射線OF在內(nèi)部.
①若,判斷OF是否為的平分線,并說明理由;
②若OF平分,,求的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com