【題目】直線AB與直線CD相交于點(diǎn)O,OE平分.
(1)如圖①,若,求的度數(shù);
(2)如圖②,射線OF在內(nèi)部.
①若,判斷OF是否為的平分線,并說(shuō)明理由;
②若OF平分,,求的度數(shù).
【答案】(1)∠AOE=155°;(2)①DF平分∠AOD,證明見(jiàn)解析;②∠BOD=60°
【解析】
(1)由∠BOC=130°可得∠BOD=50°根據(jù)OE平分∠BOD得,根據(jù)對(duì)頂角相等可得∠AOD=∠BOC=130°即可求出∠AOE的度數(shù);
(2)①由OE平分∠BOD可得∠BOE=∠DOE由OF⊥OE可得∠EOF=90°,故∠DOF=90°-∠DOE由圖形可計(jì)算出:∠AOF=90°-∠BOE,故∠AOF=∠DOF可證DF平分∠AOD
②依題意設(shè)∠DOF=3x,則∠AOF=5x由OF平分∠AOE,可得∠EOF=∠AOF=5x,∠AOE=10x,可得:∠DOE=∠EOF-∠DOF=5x-3x=2x由OE平分∠BOD可得∠BOE=∠DOE=2x,∠BOD=4x由圖形可知∠BOE+∠AOE=180°,列出方程求出x即可
(1) ∵∠BOC=130°
∴∠BOD=180°-∠BOC=180°-130°=50°
∵OE平分∠BOD
∴
∴∠AOD=∠BOC=130°
∴∠AOE=∠AOD+∠DOE=130°+25°=155°
(2) ①∵OE平分∠BOD
∴∠BOE=∠DOE
∵OF⊥OE
∴∠EOF=90°
∴∠DOF=90°-∠DOE
∵∠AOF=180°-∠EOF-∠BOE
=180°-90°-∠BOE
=90°-∠BOE
∴∠AOF=∠DOF
∴DF平分∠AOD
②∵
∴設(shè)∠DOF=3x,則∠AOF=5x
∵OF平分∠AOE
∴∠EOF=∠AOF=5x,∠AOE=10x
∴∠DOE=∠EOF-∠DOF=5x-3x=2x
∵OE平分∠BOD
∴∠BOE=∠DOE=2x,∠BOD=4x
∵∠BOE+∠AOE=180°
∴2x+10x=180°
∴x=15°
∴∠BOD=4×15°=60°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD是高,BE平分∠ABC.
(1)若∠EBC=32°,∠1∶∠2=1∶2,EF∥AD,求∠FEC的度數(shù).
(2)若∠2=50°,點(diǎn)F為射線CB上的一個(gè)動(dòng)點(diǎn),當(dāng)△EFC為鈍角三角形時(shí),直接寫(xiě)出∠FEC的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若干人乘坐若干輛汽車(chē),如果每輛汽車(chē)坐22人,有1人不能上車(chē);如果有一輛車(chē)不坐人,那么所有旅客正好能平分乘到其他各車(chē)上,則旅客共________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】.附圖(①)為一張三角形ABC紙片,P點(diǎn)在BC上.今將A折至P時(shí),出現(xiàn)折線BD,其中D點(diǎn)在AC上,如圖(②)所示.若△ABC的面積為80,△DBC的面積為50,則BP與PC的長(zhǎng)度比為何?( )
A.3:2 B.5:3 C.8:5 D.13:8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是矩形ABCD的邊AD上一個(gè)動(dòng)點(diǎn),矩形的兩條邊AB、BC的長(zhǎng)分別為3和4,那么點(diǎn)P到矩形的兩條對(duì)角線AC和BD的距離之和是( )
A.
B.
C.
D.不確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,以△ABC的邊AB、AC向外作正方形ABDE和正方形ACFG,試判斷△ABC與△AEG面積之間的關(guān)系,并說(shuō)明理由。
(2)園林小路,曲徑通幽,如圖2所示,小路由白色的正方形理石和黑色的三角形理石鋪成.已知中間的所有正方形的面積之和是a平方米,內(nèi)圈的所有三角形的面積之和是b平方米,這條小路一共占地多少平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).
(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知四邊形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD為銳角.
(1)求證:AD⊥BF;
(2)若BF=BC,求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校在一次環(huán)保知識(shí)宣傳活動(dòng)中,需要印刷若干份調(diào)查問(wèn)卷。印刷廠有甲、乙兩種收費(fèi)方式:甲種方式收制版費(fèi)6元,每一份收印刷費(fèi)0.1元;乙種方式不收制版費(fèi),每印一份收印刷費(fèi)0.12元。設(shè)共印調(diào)查問(wèn)卷份:
(1)按甲種方式應(yīng)收費(fèi)多少元,按乙種方式應(yīng)收費(fèi)多少元(用含的代數(shù)式表示);
(2)若共需印刷500份調(diào)查問(wèn)卷,通過(guò)計(jì)算說(shuō)明選用哪種方式合算?
(3)印刷多少份調(diào)查問(wèn)卷時(shí),甲、乙兩種方式收費(fèi)一樣多?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com