【題目】先仔細閱讀材料,再解決問題:
完全平方式x2±2xy+y2=(x±y)2以及(x±y)2的值為非負數(shù)的特點在數(shù)學學習中有廣泛的應用,比如探求2x2+12x﹣4的最大(。┲禃r,我們可以配成完全平方式來解決:
解:原式=2(x2+6x﹣2)=2(x2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22.
∵無論x取什么數(shù),都有(x+3)2≥0,∴(x+3)2的最小值為0;
∴x=﹣3時,2(x+3)2﹣22的最小值是2×0﹣22=﹣22;
∴當x=﹣3時,2x2+12x﹣4的最小值是﹣22.
請根據(jù)上面的解題思路,解答下列問題:
(1)多項式3x2﹣6x+12的最小值是多少,并寫出對應的x的值;
(2)判斷多項式有最大值還是最小值,請你說明理由并求出當x為何值時,此多項式的最大值(或最小值)是多少.
科目:初中數(shù)學 來源: 題型:
【題目】空氣質(zhì)量狀況已引起全社會的廣泛關(guān)注,某市統(tǒng)計了去年每月空氣質(zhì)量達到良好以上的天數(shù),整理后制成如圖所示的折線統(tǒng)計圖和扇形統(tǒng)計圖.根據(jù)以上信息解答下列問題:該市去年空氣質(zhì)量連續(xù)提升的月份范圍是____;扇形統(tǒng)計圖中扇形A的圓心角的度數(shù)為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,已知是外一點,連接,求的度數(shù).
解:(1)如圖1,過點作,所以依據(jù),(依據(jù)①_____).又因為(依據(jù)②_____),所以.
填空:①是_______;②是______.
(2)如圖2,,求的度數(shù).
(3)如圖3,,點在點的右側(cè),;點在點的左側(cè),.平分,平分,所在的直線交于點,點在與兩條平行線之間,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD是高,BE平分∠ABC.
(1)若∠EBC=32°,∠1∶∠2=1∶2,EF∥AD,求∠FEC的度數(shù).
(2)若∠2=50°,點F為射線CB上的一個動點,當△EFC為鈍角三角形時,直接寫出∠FEC的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們用表示不大于的最大整數(shù),例如:,,;用表示大于的最小整數(shù),例如:,,.解決下列問題:
(1)= ,,= ;
(2)若=2,則的取值范圍是 ;若=-1,則的取值范圍是 ;
(3)已知,滿足方程組,求,的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】古希臘數(shù)學家把數(shù)1,3,6,10,15,21,…叫做三角形數(shù),它有一定的規(guī)律性,若把第一個三角形數(shù)記為,第二個三角形數(shù)記為,…第n個三角形數(shù)記為,其中,,,…,則=___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(1, 2),B(3, 1),C(-2, -1).
(1)在圖中作出關(guān)于軸對稱的.
(2)寫出點的坐標(直接寫答案).
A1 ______________ , B1 ______________,C1 _____________;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若干人乘坐若干輛汽車,如果每輛汽車坐22人,有1人不能上車;如果有一輛車不坐人,那么所有旅客正好能平分乘到其他各車上,則旅客共________人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,下列能判定AB∥CD的條件有( )個.
(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com