【題目】如圖,在△ABC中,∠C=90°,∠A=30°,以點B為圓心,適當(dāng)長為半徑的畫弧,分別交BA,BC于點M、N;再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線BP交AC于點D,則下列說法中不正確的是()
A. BP是∠ABC的平分線B. AD=BDC. D. CD=BD
【答案】C
【解析】
A、由作法得BD是∠ABC的平分線,即可判定;
B、先根據(jù)三角形內(nèi)角和定理求出∠ABC的度數(shù),再由BP是∠ABC的平分線得出∠ABD=30°=∠A,即可判定;
C,D、根據(jù)含30°的直角三角形,30°所對直角邊等于斜邊的一半,即可判定.
解:由作法得BD平分∠ABC,所以A選項的結(jié)論正確;
∵∠C=90°,∠A=30°,
∴∠ABC=60°,
∴∠ABD=30°=∠A,
∴AD=BD,所以B選項的結(jié)論正確;
∵∠CBD=∠ABC=30°,
∴BD=2CD,所以D選項的結(jié)論正確;
∴AD=2CD,
∴S△ABD=2S△CBD,所以C選項的結(jié)論錯誤.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)一種商品,每件商品進(jìn)價30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)
與每件銷售價x(元)的關(guān)系數(shù)據(jù)如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫出自變量x的取值范圍);
(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價應(yīng)定為多少元?
(3)設(shè)該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價定為多少元時利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為美化校園環(huán)境,某校計劃在一塊長為60米,寬為40米的長方形空地上修建一個長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為米.
(1)如果通道所占面積是整個長方形空地面積的,求出此時通道的寬;
(2)能否設(shè)計出符合題目要求,且長方形花圃的形狀與原長方形空地的形狀相似的花圃?若能,求出此時通道的寬;若不能,則說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=36°時,求∠DEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家住房結(jié)構(gòu)如圖所示,圖中標(biāo)了有關(guān)尺寸(墻體厚度忽略不計,單位:米)房屋的主人計劃把臥室以外的地面都鋪上地磚.
(1)如果他選用地磚的價格是 a 元/平方米,則買地磚至少需用多少元(圖中標(biāo)了有關(guān)尺寸(墻體厚度忽略不計,單位:米)
(2)如果房屋的高度為 h 米,現(xiàn)需要在客廳和臥室的墻上貼壁紙,至少需要多少平方米的壁紙?(計算時不扣除門、窗所占的面積,結(jié)果用代數(shù)式表示)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D,E是△ABC內(nèi)的兩點,AD平分∠BAC,∠EBC=∠E=60°.若BE=9cm,DE=3cm,則BC的長為 ( )
A.12cmB.11cmC.9cmD.6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D 為∠BAC 的外角平分線上一點并且滿足 BD=CD, 過 D 作 DE⊥AC 于 E,DF⊥AB 交 BA 的延長線于 F,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A為∠MON內(nèi)部一定點,點P、Q分別為射線OM,ON上的動點,若△APQ的周長最小時,∠PAQ=40°,則∠MON=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標(biāo);如果不存在,請說明理由;
(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com