【題目】如圖,D 為∠BAC 的外角平分線上一點(diǎn)并且滿足 BD=CD, 過 D 作 DE⊥AC 于 E,DF⊥AB 交 BA 的延長(zhǎng)線于 F,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有______
【答案】①②③④
【解析】
根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得DE=DF,再利用“HL”證明Rt△CDE和Rt△BDF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CE=AF,利用“HL”證明Rt△ADE和Rt△ADF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AE=AF,然后求出CE=AB+AE;根據(jù)全等三角形對(duì)應(yīng)角相等可得∠DBF=∠DCE,然后求出A、B、C、D四點(diǎn)共圓,根據(jù)同弧所對(duì)的圓周角相等得到∠BDC=∠BAC;∠DAE=∠CBD,再根據(jù)全等三角形對(duì)應(yīng)角相等可得∠DAE=∠DAF,然后求出∠DAF=∠CBD.
∵AD平分∠CAF,DE⊥AC,DF⊥AB,
∴DE=DF,
在Rt△CDE和Rt△BDF中,
,
∴Rt△CDE≌Rt△BDF(HL),故①正確;
∴CE=AF,
在Rt△ADE和Rt△ADF中,
,
∴Rt△ADE≌Rt△ADF(HL),
∴AE=AF,
∴CE=AB+AF=AB+AE,故②正確;
∵Rt△CDE≌Rt△BDF,
∴∠DBF=∠DCE,
∴A、B、C、D四點(diǎn)共圓
∴∠BDC=∠BAC,故③正確;
由A、B、C、D四點(diǎn)共圓也得到∠DAE=∠CBD,
∵Rt△ADE≌Rt△ADF,
∴∠DAE=∠DAF,
∴∠DAF=∠CBD,故④正確;
綜上所述,正確的結(jié)論有①②③④.
故填:①②③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時(shí)出發(fā),設(shè)慢車行駛的時(shí)間為x(h),兩車之間的距離為y(km),圖中折線表示y與x之間的函數(shù)關(guān)系,根據(jù)圖象進(jìn)行以下探究:
信息獲。
(1)甲、乙兩地之間的距離為 km
(2)請(qǐng)解釋圖中點(diǎn)B的實(shí)際意義;圖象理解: .
(3)求慢車和快車的速度;
(4)求出C點(diǎn)的坐標(biāo).
(第(3)、(4)問要求寫出求解過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AD為∠BAC的平分線.
(1)如圖1,若∠C=2∠B,AB=12,AC=7.2,求線段CD的長(zhǎng)度;
(2)如圖2,若∠BAC=2∠ABC,∠ABC的平分線BP與AD交于點(diǎn)P,且BP=AC,求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A=30°,以點(diǎn)B為圓心,適當(dāng)長(zhǎng)為半徑的畫弧,分別交BA,BC于點(diǎn)M、N;再分別以點(diǎn)M、N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,作射線BP交AC于點(diǎn)D,則下列說法中不正確的是()
A. BP是∠ABC的平分線B. AD=BDC. D. CD=BD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,點(diǎn)是的中點(diǎn),的平分線奇交于點(diǎn),將沿折疊,點(diǎn)恰好落在上點(diǎn)處,延長(zhǎng)、交于點(diǎn),有下列四個(gè)結(jié)論:
①;②;③;④.
其中,將正確的結(jié)論有幾個(gè):( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,點(diǎn)是邊上一個(gè)動(dòng)點(diǎn),過作直線,設(shè)交的平分線于點(diǎn),交
的外角平分線于點(diǎn).
探究:線段與的數(shù)量關(guān)系并加以證明;
當(dāng)點(diǎn)運(yùn)動(dòng)到何處,且滿足什么條件時(shí),四邊形是正方形?
當(dāng)點(diǎn)在邊上運(yùn)動(dòng)時(shí),四邊形會(huì)是菱形嗎?若是,請(qǐng)證明,若不是,則說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解本校九年級(jí)男生“引體向上”項(xiàng)目的訓(xùn)練情況,隨機(jī)抽取該年級(jí)部分男生進(jìn)行了一次測(cè)試(滿分15分,成績(jī)均記為整數(shù)分),并按測(cè)試成績(jī)(單位:分)分成四類:A類(12≤m≤15),B類(9≤m≤11),C類(6≤m≤8),D類(m≤5)繪制出以下兩幅不完整的統(tǒng)汁圖,請(qǐng)根據(jù)圖中信息解答下列問題:
(l)本次抽取樣本容量為____,扇形統(tǒng)計(jì)圖中A類所對(duì)的圓心角是____度;
(2)請(qǐng)補(bǔ)全統(tǒng)計(jì)圖;
(3)若該校九年級(jí)男生有300名,請(qǐng)估計(jì)該校九年級(jí)男生“引體向上”項(xiàng)目成績(jī)?yōu)镃類的有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB⊥BC,BF=CF,∠C=30°,D是AC的中點(diǎn),E是CD的中點(diǎn),連接BE,AF交于G,連接DG.
(1)若E到BC的距離為2,求AB的長(zhǎng);
(2)證明:GD平分∠AGE;
(3)猜想BG,FG,GD,AF的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張長(zhǎng)方形ABCD紙張中,一邊BC折疊后落在對(duì)角線BD上,點(diǎn)E為折痕與邊CD的交點(diǎn),若AB=5,BC=12,求圖中陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com