【題目】(1)如圖,已知點(diǎn)C在線段AB上,AC=6cm,且BC=4cm,M、N分別是AC、BC的中點(diǎn),求線段MN的長(zhǎng)度;

(2)在(1)題中,如果其他條件不變,你能猜出MN的長(zhǎng)度嗎?請(qǐng)你用一句簡(jiǎn)潔的話表達(dá)你發(fā)現(xiàn)的規(guī)律;

(3)對(duì)于(1)題,當(dāng)點(diǎn)C在BA的延長(zhǎng)線上時(shí),且AB=其他條件不變,求MN的長(zhǎng)度.

【答案】(1)5cm;(2)見(jiàn)解析;(3) .

【解析】

(1)根據(jù)線段中點(diǎn)的性質(zhì),可得MC、NC的長(zhǎng),根據(jù)線段的和差,可得答案;
(2)根據(jù)線段中點(diǎn)的性質(zhì),可得MC、NC的長(zhǎng),根據(jù)線段的和差,可得答案;(3) 根據(jù)線段中點(diǎn)的性質(zhì),可得MC、NC的長(zhǎng),根據(jù)BC=AB+AC,可得MN=.

(1)解:因?yàn)?/span>M,N分別是AC,BC的中點(diǎn)所以,
MC=AC=×6=3cm,
NC=BC=×4=2cm,
所以,MN=MC+NC=3+2=5(cm);
(2)解:由(1)知MC=a,NC=b,
所以,MN=MC+NC=a+b=(a+b).

規(guī)律:直線上相鄰兩線段中點(diǎn)間的距離為兩線段長(zhǎng)度和的一半.

(3) 當(dāng)點(diǎn)C在線段BA的延長(zhǎng)線時(shí),如圖:

因?yàn)?/span>M,N分別是AC,BC的中點(diǎn)所以,

CM=AC
CN=BC
MN=CN-CM=,

BC=AB+AC,AB=m,

MN==.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校九年級(jí)開(kāi)展“光盤行動(dòng)”宣傳活動(dòng),各班級(jí)參加該活動(dòng)的人數(shù)統(tǒng)計(jì)結(jié)果如下表,對(duì)于這組統(tǒng)計(jì)數(shù)據(jù),下列說(shuō)法中正確的是( )

班級(jí)

1班

2班

3班

4班

5班

6班

人數(shù)

52

60

62

54

58

62


A.平均數(shù)是58
B.中位數(shù)是58
C.極差是40
D.眾數(shù)是60

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】老師想知道學(xué)生們每天在上學(xué)的路上要花多少時(shí)間,于是讓大家將每天來(lái)校上課的單程時(shí)間寫在紙上.下面是全班30名學(xué)生單程所花的時(shí)間(單位:min):

20,20,30,15,20,25,5,15,20,10,15,35,45,10,20,25,30,20,15,20,20,10,20,5,15,20,20,20,5,15.

(1)用表格將上述數(shù)據(jù)加以整理;

(2)畫出學(xué)生上學(xué)單程所花時(shí)間與次數(shù)的條形統(tǒng)計(jì)圖;

(3)根據(jù)調(diào)查結(jié)果,計(jì)算每天單程20min到校的學(xué)生有多少名?占全班學(xué)生人數(shù)的百分比是多少?你認(rèn)為老師還能獲得哪些信息?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

(1)(a-b)2(a-b)3(b-a)5 (2)(a-b+c)3(b-a-c)5(a-b+c)6

(3)(b-a)m·(b-a)n-5·(a-b)5 (4)x·xm-1+x2·xm-2-3x3·xm-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC 三個(gè)頂點(diǎn)的坐標(biāo)分別為 A(1,1),B(4,2),C(3,4).

(1)請(qǐng)畫出ABC 向左平移 5 個(gè)單位長(zhǎng)度后得到的A1B1C1;

(2)在 x 軸上求作一點(diǎn) P,使PAB 的周長(zhǎng)最小,請(qǐng)畫出PAB,并直接寫出 P 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸交于點(diǎn)C(0,4)與x軸交于點(diǎn)A、B,點(diǎn)B(4,0),拋物線的對(duì)稱軸為x=1.直線AD交拋物線于點(diǎn)D(2,m).

(1)求二次函數(shù)的解析式并寫出D點(diǎn)坐標(biāo);
(2)點(diǎn)E是BD的中點(diǎn),點(diǎn)Q是線段AB上一動(dòng)點(diǎn),當(dāng)△QBE和△ABD相似時(shí),求點(diǎn)Q的坐標(biāo);
(3)拋物線與y軸交于點(diǎn)C,直線AD與y軸交于點(diǎn)F,點(diǎn)M為拋物線對(duì)稱軸上的動(dòng)點(diǎn),點(diǎn)N在x軸上,當(dāng)四邊形CMNF周長(zhǎng)取最小值時(shí),求出滿足條件的點(diǎn)M和點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上A 點(diǎn)對(duì)應(yīng)的數(shù)為﹣5,B 點(diǎn)在A 點(diǎn)右邊,電子螞蟻甲、乙在B分別以2個(gè)單位/秒、1個(gè)單位/秒的速度向左運(yùn)動(dòng),電子螞蟻丙在A 3個(gè)單位/秒的速度向右運(yùn)動(dòng).

(1)若電子螞蟻丙經(jīng)過(guò)5秒運(yùn)動(dòng)到C 點(diǎn),求C 點(diǎn)表示的數(shù);

(2)若它們同時(shí)出發(fā),若丙在遇到甲后1秒遇到乙,求B 點(diǎn)表示的數(shù);

(3)在(2)的條件下,設(shè)它們同時(shí)出發(fā)的時(shí)間為t 秒,是否存在t的值,使丙到乙的距離是丙到甲的距離的2倍?若存在,求出t 值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,填空:

(1)若∠4=∠3,則_________,理由是______

(2)若∠2=∠E,則_______,理由是____;

(3)若∠A=∠ABE=180°,則_______,理由是____

(4)若∠2=∠____,則DA∥EB,理由是____;

(5)若∠DBC+∠_____=180°,則DB∥EC,理由是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x﹣交x軸于點(diǎn)A,交y軸于點(diǎn)C,直線y=x﹣5交x軸于點(diǎn)B,在平面內(nèi)有一點(diǎn)E,其坐標(biāo)為(4,),連接CB,點(diǎn)K是線段CB的中點(diǎn),另有兩點(diǎn)M,N,其坐標(biāo)分別為(a,0),(a+1,0).將K點(diǎn)先向左平移 個(gè)單位,再向上平移個(gè)單位得K′,當(dāng)以K′,E,M,N四點(diǎn)為頂點(diǎn)的四邊形周長(zhǎng)最短時(shí),a的值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案