【題目】已知函數(shù)y=2+
(1)寫出自變量x的取值范圍:;
(2)請(qǐng)通過列表,描點(diǎn),連線畫出這個(gè)函數(shù)的圖象: ①列表:

x

﹣8

﹣4

﹣3

﹣2

﹣1

1

2

3

4

8

y

1

0

﹣2

﹣6

10

6

4

3

②描點(diǎn)(在下面給出的直角坐標(biāo)系中補(bǔ)全表中對(duì)應(yīng)的各點(diǎn));
③連線(將圖中描出的各點(diǎn)用平滑的曲線連接起來,得到函數(shù)的圖象).

(3)觀察函數(shù)的圖象,回答下列問題: ①圖象與x軸有個(gè)交點(diǎn),所以對(duì)應(yīng)的方程2+ =0實(shí)數(shù)根是;
②函數(shù)圖象的對(duì)稱性是
A、既是軸對(duì)稱圖形,又是中心對(duì)稱圖形
B、只是軸對(duì)稱圖形,不是中心對(duì)稱圖形
C、不是軸對(duì)稱圖形,而是中心對(duì)稱圖形
D、既不是軸對(duì)稱圖形也不是中心對(duì)稱圖形
(4)寫出函數(shù)y=2+ 與y= 的圖象之間有什么關(guān)系?(從形狀和位置方面說明)

【答案】
(1)x≠0
(2)解:(2,4),(4,3)需要補(bǔ)上,如圖所示;


(3)1;x=﹣2;A
(4)將函數(shù)y= 的圖象向上平移2個(gè)單位就可以得到函數(shù)y=2+ 的圖象
【解析】解:(1)自變量x的取值范圍:x≠0;所以答案是:x≠0; ⑶①圖象與x軸有1個(gè)交點(diǎn),所以對(duì)應(yīng)的方程2+ =0實(shí)數(shù)根是x=﹣2,
②A,所以答案是:1,x=﹣2;A;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解反比例函數(shù)的圖象的相關(guān)知識(shí),掌握反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對(duì)稱圖形又是中心對(duì)稱圖形.有兩條對(duì)稱軸:直線y=x和 y=-x.對(duì)稱中心是:原點(diǎn),以及對(duì)反比例函數(shù)的性質(zhì)的理解,了解性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減小; 當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小慧根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=|x﹣1|的圖象與性質(zhì)進(jìn)行了探究.下面是小慧的探究過程,請(qǐng)補(bǔ)充完整:
(1)函數(shù)y=|x﹣1|的自變量x的取值范圍是;
(2)列表,找出y與x的幾組對(duì)應(yīng)值.

x

﹣1

0

1

2

3

y

b

1

0

1

2

其中,b=;
(3)在平面直角坐標(biāo)系xOy中,描出以上表中對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并畫出該函數(shù)的圖象;
(4)寫出該函數(shù)的一條性質(zhì):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y= x(x﹣k)經(jīng)過原點(diǎn)O,交x軸正半軸于A,過A的直線交拋物線于另一點(diǎn)B,AB交y軸正半軸于C,且OC=OA,B點(diǎn)的縱坐標(biāo)為9

(1)求拋物線的解析式;
(2)點(diǎn)P為第一象限的拋物線上一點(diǎn),連接PB、PC,設(shè)P點(diǎn)的橫坐標(biāo)為m,△PBC的面積為S,求S與m的函數(shù)關(guān)系式;
(3)在(2)的條件下,連接OP、AP,若∠APO=45°,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是 的中點(diǎn),⊙O的切線BD交AC的延長(zhǎng)線于點(diǎn)D,E是OB的中點(diǎn),CE的延長(zhǎng)線交切線BD于點(diǎn)F,AF交⊙O于點(diǎn)H,連接BH.
(1)求證:AC=CD;
(2)若OB=2,求BH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,AC=BC,AB=4,D為AB上的動(dòng)點(diǎn),DP⊥AB交折線A﹣C﹣B于點(diǎn)P,設(shè)AD=x,△ADP的面積為y,則y與x的函數(shù)圖象正確的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),C(3,1)拋物線y= x2+bx﹣2的圖象過C點(diǎn),交y軸于點(diǎn)D.

(1)在后面的橫線上直接寫出點(diǎn)D的坐標(biāo)及b的值: , b=;
(2)平移該拋物線的對(duì)稱軸所在直線l,設(shè)l與x軸交于點(diǎn)G(x,0),當(dāng)OG等于多少時(shí),恰好將△ABC的面積分為相等的兩部分?
(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)P,使四邊形PACB為平行四邊形?若存在,直接寫出P點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校準(zhǔn)備開展“陽(yáng)光體育活動(dòng)”,決定開設(shè)以下體育活動(dòng)項(xiàng)目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項(xiàng),為了解選擇各種體育活動(dòng)項(xiàng)目的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將通過調(diào)查獲得的數(shù)據(jù)進(jìn)行整理,繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答問題:
(1)這次活動(dòng)一共調(diào)查了名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,選擇籃球項(xiàng)目的人數(shù)所在扇形的圓心角等于度;
(4)若該學(xué)校有1500人,請(qǐng)你估計(jì)該學(xué)校選擇足球項(xiàng)目的學(xué)生人數(shù)約是人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c(a≠0)經(jīng)過A、B、C三點(diǎn),點(diǎn)A、C的坐標(biāo)分別是(0,4)、(﹣1,0).

(1)求此拋物線的解析式;
(2)點(diǎn)P是第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),當(dāng)△ABP的面積最大時(shí),求出此時(shí)P的坐標(biāo)及面積的最大值;
(3)若G為拋物線上的一動(dòng)點(diǎn),F(xiàn)為x軸上的一動(dòng)點(diǎn),點(diǎn)D坐標(biāo)為(1,4),點(diǎn)E坐標(biāo)為(1,0),當(dāng)D、E、F、G構(gòu)成平行四邊形時(shí),請(qǐng)直接寫出點(diǎn)G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在棋盤中建立如圖所示的平面直角坐標(biāo)系,三顆棋子A,O,B的位置如圖所示,它們的坐標(biāo)分別是(﹣1,1),(0,0)和(1,0)

(1)如圖,添加棋子C,使A,O,B,C四顆棋子成為一個(gè)軸對(duì)稱圖形,請(qǐng)?jiān)趫D中畫出該圖形的對(duì)稱軸;
(2)在其他個(gè)點(diǎn)位置添加一顆棋子P,使A,O,B,P四顆棋子成為一個(gè)軸對(duì)稱圖形,請(qǐng)直接寫出棋子P的位置坐標(biāo)(寫出2個(gè)即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案