精英家教網 > 初中數學 > 題目詳情

【題目】小慧根據學習函數的經驗,對函數y=|x﹣1|的圖象與性質進行了探究.下面是小慧的探究過程,請補充完整:
(1)函數y=|x﹣1|的自變量x的取值范圍是;
(2)列表,找出y與x的幾組對應值.

x

﹣1

0

1

2

3

y

b

1

0

1

2

其中,b=
(3)在平面直角坐標系xOy中,描出以上表中對對應值為坐標的點,并畫出該函數的圖象;
(4)寫出該函數的一條性質:

【答案】
(1)任意實數
(2)2
(3)解:如圖所示


(4)函數的最小值為0(答案不唯一)
【解析】解:(1)∵x無論為何值,函數均有意義, ∴x為任意實數.
所以答案是:任意實數;
⑵∵當x=﹣1時,y=|﹣1﹣1|=2,
∴b=2.
所以答案是:2;
⑷由函數圖象可知,函數的最小值為0.
所以答案是:函數的最小值為0(答案不唯一).

【考點精析】認真審題,首先需要了解一次函數的性質(一般地,一次函數y=kx+b有下列性質:(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減小),還要掌握一次函數的圖象和性質(一次函數是直線,圖像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知二次函數y=mx2+(3m+1)x+3.
(1)當m取何值時,此二次函數的圖象與x軸有兩個交點;
(2)當拋物線y=mx2+(3m+1)x+3與x軸兩個交點的橫坐標均為整數,且m為正整數時,求此拋物線的表達式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,正方形ABCD與正方形AEFG的邊AB、AE(AB<AE)在一條直線上,正方形AEFG以點A為旋轉中心逆時針旋轉,設旋轉角為α.在旋轉過程中,兩個正方形只有點A重合,其它頂點均不重合,連接BE、DG.
(1)當正方形AEFG旋轉至如圖2所示的位置時,求證:BE=DG;
(2)如圖3,如果α=45°,AB=2,AE=4 ,求點G到BE的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AE∥BF,AC平分∠BAE,且交BF于點C,BD平分∠ABF,且交AE于點D,連接CD.
(1)求證:四邊形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點O是矩形紙片ABCD的對稱中心,E是BC上一點,將紙片沿AE折疊后,點B恰好與點O重合.若BE=3,則折痕AE的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,D、E分別為AB、AC邊上的點,DE∥BC,點F為BC邊上一點,連接AF交DE于點G,則下列結論中一定正確的是(
A. =
B. =
C. =
D. =

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】威麗商場銷售A,B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元,售出3件A種商品和5件B種商品所得利潤為1100元.
(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元;
(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進A、B兩種商品共34件.如果將這34件商品全部售完后所得利潤不低于4000元,那么威麗商場至少需購進多少件A種商品?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在一條筆直的東西向海岸線l上有一長為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N有20km.一輪船以36km/h的速度航行,上午10:00在A處測得燈塔C位于輪船的北偏西30°方向,上午10:40在B處測得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.

(1)若輪船照此速度與航向航行,何時到達海岸線?
(2)若輪船不改變航向,該輪船能否?吭诖a頭?請說明理由.(參考數據: ≈1.4, ≈1.7)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知函數y=2+
(1)寫出自變量x的取值范圍:;
(2)請通過列表,描點,連線畫出這個函數的圖象: ①列表:

x

﹣8

﹣4

﹣3

﹣2

﹣1

1

2

3

4

8

y

1

0

﹣2

﹣6

10

6

4

3

②描點(在下面給出的直角坐標系中補全表中對應的各點);
③連線(將圖中描出的各點用平滑的曲線連接起來,得到函數的圖象).

(3)觀察函數的圖象,回答下列問題: ①圖象與x軸有個交點,所以對應的方程2+ =0實數根是;
②函數圖象的對稱性是
A、既是軸對稱圖形,又是中心對稱圖形
B、只是軸對稱圖形,不是中心對稱圖形
C、不是軸對稱圖形,而是中心對稱圖形
D、既不是軸對稱圖形也不是中心對稱圖形
(4)寫出函數y=2+ 與y= 的圖象之間有什么關系?(從形狀和位置方面說明)

查看答案和解析>>

同步練習冊答案