【題目】新定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.根據(jù)準(zhǔn)外心的定義,探究如下問(wèn)題:如圖,在RtΔABC中,∠C=90°,AB=10,AC=6,如果準(zhǔn)外心P在BC邊上,那么PC的長(zhǎng)為 ________

【答案】4或

【解析】

試題由到兩個(gè)點(diǎn)距離相等的點(diǎn)在這兩個(gè)點(diǎn)為端點(diǎn)的線段的垂直平分線上,則點(diǎn)P可在三角形任一邊的垂直平分線上,則點(diǎn)P可是三角形任一邊的垂直平分線與BC的交點(diǎn),根據(jù)題意分三種情況進(jìn)行討論:①P在BC的垂直平分線上;②P在AB的垂直平分線上;③P在AC的垂直平分線上.

RtΔABC中,∠C=90°,AB=10,AC=6,則BC==8.

由到兩個(gè)點(diǎn)距離相等的點(diǎn)在這兩個(gè)點(diǎn)為端點(diǎn)的線段的垂直平分線上,則點(diǎn)P可在三角形任一邊的垂直平分線上,根據(jù)題意分三種情況進(jìn)行討論:

P在BC的垂直平分線上,則P為BC中點(diǎn),PC=BC=4;

②P在AB的垂直平分線上,設(shè)PC=x,PB=PA=8-x,

Rt△PAC中,AC2+PC2=PA2,36+x2=(8-x)2解得x=,即PC=

P在AC的垂直平分線上,又AC的垂直平分線平行于BC,則P不可能在BC上,此時(shí)不成立

故答案為4或

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛慢車(chē)和一輛快車(chē)沿相同路線從A地到B,所行駛的路程與時(shí)間的函數(shù)圖象如圖所示下列說(shuō)法正確的有()個(gè)

快車(chē)追上慢車(chē)需6小時(shí)

慢車(chē)比快車(chē)早出發(fā)2小時(shí)

快車(chē)速度為46km/h

慢車(chē)速度為46km/h

AB兩地相距828km

快車(chē)14小時(shí)到達(dá)B

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的一條弦,OD⊥AB,垂足為點(diǎn)C,交⊙O于點(diǎn)D,點(diǎn)E在⊙O上.

(1)若∠AOD=52°,求∠DEB的度數(shù);

(2)若OC=3,OA=6,求tan∠DEB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn)求值:

(1),其中a=-2 。

(2)

(3),其中

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,, ,,點(diǎn)上,于點(diǎn),于點(diǎn),當(dāng)時(shí),________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上)

(1)若△CEF與△ABC相似,且當(dāng)AC=BC=2時(shí),求AD的長(zhǎng);

(2)若△CEF與△ABC相似,且當(dāng)AC=3,BC=4時(shí),求AD的長(zhǎng);

(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市健益超市購(gòu)進(jìn)一批元/千克的綠色食品,如果以元/千克銷(xiāo)售,那么每天可售出千克.由銷(xiāo)售經(jīng)驗(yàn)知,每天銷(xiāo)售量(千克)與銷(xiāo)售單價(jià)(元)()存在如下圖所示的一次函數(shù)關(guān)系.

(1)試求出yx的函數(shù)關(guān)系式;

(2)設(shè)健益超市銷(xiāo)售該綠色食品每天獲得利潤(rùn)p元,當(dāng)銷(xiāo)售單價(jià)為何值時(shí),每天可獲得 最大利潤(rùn)?最大利潤(rùn)是多少?

(3)根據(jù)市場(chǎng)調(diào)查,該綠色食品每天可獲利潤(rùn)不超過(guò)4480元,現(xiàn)該超市經(jīng)理要求每天利潤(rùn)不得低于4180元,請(qǐng)你幫助該超市確定綠色食品銷(xiāo)售單價(jià)x的范圍(直接寫(xiě)出).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD,點(diǎn)E是BC上一點(diǎn),點(diǎn)F是CD延長(zhǎng)線上一點(diǎn),連接EF,若BE=DF,點(diǎn)P是EF的中點(diǎn).

(1)求證:AE=AF;

(2)若AEB=75°,求CPD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在方格紙中,ABC的三個(gè)頂點(diǎn)及D,EF,G,H五個(gè)點(diǎn)分別位于小正方形的頂點(diǎn)上.

(1)現(xiàn)以DE,F,G,H中的三個(gè)點(diǎn)為頂點(diǎn)畫(huà)三角形,在所畫(huà)的三角形中與ABC不全等但面積相等的三角形是 (只需要填一個(gè)三角形);

(2)先從D,E兩個(gè)點(diǎn)中任意取一個(gè)點(diǎn),再?gòu)?/span>F,GH三個(gè)點(diǎn)中任意取兩個(gè)不同的點(diǎn),以所取的這三個(gè)點(diǎn)為頂點(diǎn)畫(huà)三角形,畫(huà)樹(shù)狀圖求所畫(huà)三角形與ABC面積相等的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案