【題目】如圖,已知正方形ABCD,點(diǎn)E是BC上一點(diǎn),點(diǎn)F是CD延長(zhǎng)線上一點(diǎn),連接EF,若BE=DF,點(diǎn)P是EF的中點(diǎn).

(1)求證:AE=AF;

(2)若AEB=75°,求CPD的度數(shù).

【答案】(1)證明見解析;(2)105°.

【解析】

試題

(1)由已知條件證△ABE≌△ADF即可可得到AE=AF;

(2)

試題解析

(1)∵四邊形ABCD為正方形,

∴∠B=∠ADC=∠ADF=90°,AB=AD,

∵BE=DF,

△ABE△ADF中, ,

∴△ABE≌△ADF(SAS),

∴AE=AF;

(2)連結(jié)AP,

∵△ABE≌△ADF,

∴∠BAE=∠DAF,

∵∠BAE+∠EAD=90°,

∴∠DAF+∠EAD=90°,即∠EAF=90°,

∵AE=AF,

∴∠AEF=45°,

∵∠AEB=75°,

∴∠CEF=180°﹣45°﹣75°=60°,

∴∠EFC=180°-90°-60°=30°,

∵∠ECF=90°,PEF中點(diǎn),

∴CP=PF=EF,

∴∠EFC=∠PCF=30°,

∵PEF中點(diǎn),∠EAF=90°,

∴AP=EF,

∴AP=CP,

△APD△CPD ,

∴△APD≌△CPD(SSS),

∴∠ADP=∠CDP=∠ADC=45°,

∴∠CPD=180°﹣∠PCD﹣∠CDP=105°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的部分圖象如圖,圖象過(guò)點(diǎn)(﹣10),對(duì)稱軸為直線,下列結(jié)論:①;;④當(dāng)時(shí), 的增大而增大.其中正確的結(jié)論有(  

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.根據(jù)準(zhǔn)外心的定義,探究如下問(wèn)題:如圖,在RtΔABC中,∠C=90°,AB=10,AC=6,如果準(zhǔn)外心P在BC邊上,那么PC的長(zhǎng)為 ________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某超市在一樓至二樓之間安裝有電梯,天花板與地面平行,請(qǐng)你根據(jù)圖中數(shù)據(jù)計(jì)算回答:小華身高1.78,他乘電梯會(huì)有碰頭危險(xiǎn)嗎?姚明身高2.26,他乘電梯會(huì)有碰頭危險(xiǎn)嗎?(參考數(shù)據(jù):sin27°0.45,cos27°0.89,tan27°0.51)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖直線l經(jīng)過(guò)正方形ABCD的頂點(diǎn)A,分別過(guò)此正方形的頂點(diǎn)B、D作BEl于點(diǎn)E,DFl于點(diǎn)F.以正方形對(duì)角線的交點(diǎn)O為端點(diǎn),引兩條相互垂直的射線分別與AD、CD交于G、H兩點(diǎn),若EF=2,SABE= ,則線段GH長(zhǎng)度的最小值是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,延長(zhǎng)BC至點(diǎn)D,使DC=CB,延長(zhǎng)DA

與⊙O的另一個(gè)交點(diǎn)為E,連結(jié)AC,CE。

1)求證:B=D;

2)若AB=4,BC-AC=2,求CE的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是( 。.

A. “打開電視機(jī),正在播放《動(dòng)物世界》”是必然事件

B. 某種彩票的中獎(jiǎng)概率為,說(shuō)明每買1000張,一定有一張中獎(jiǎng)

C. 拋擲一枚質(zhì)地均勻的硬幣一次,出現(xiàn)正面朝上的概率為

D. 想了解長(zhǎng)沙市所有城鎮(zhèn)居民的人均年收入水平,宜采用抽樣調(diào)查

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過(guò)點(diǎn)D,分別交AC,AB于點(diǎn)E,F(xiàn).

(1)試判斷直線BC與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)a0)的圖象與x軸交于A、B兩點(diǎn),(AB左側(cè),且OAOB),與y軸交于點(diǎn)C.

1)求C點(diǎn)坐標(biāo),并判斷b的正負(fù)性;

2)設(shè)這個(gè)二次函數(shù)的圖像的對(duì)稱軸與直線AC交于點(diǎn)D,已知DCCA=12,直線BDy軸交于點(diǎn)E,連接BC,

①若BCE的面積為8,求二次函數(shù)的解析式;

②若BCD為銳角三角形,請(qǐng)直接寫出OA的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案