【題目】如圖,四邊形是矩形,點在線段的延長線上,連接交于點,,點是的中點.
()求證:.
()若,,,點是的中點,求的長.
【答案】()見解析()
【解析】試題分析:
(1)由已知條件易證∠GAD=∠ADE=∠CED,結(jié)合∠AGE=∠GAD+∠ADE,可得∠AGE=2∠CED,再結(jié)合∠AED=2∠CED即可得到∠AGE=∠AED,從而可得AE=AG;
(2)如下圖,連接GH,由(1)中結(jié)論可知AE=AG=,結(jié)合BE=2,在Rt△ABE中可求得AB=11,結(jié)合BF=1可求得AF=10,再結(jié)合G是DF的中點,H是AD的中點由三角形中位線定理即可求得GH=5.
試題解析:
()∵ 四邊形是矩形,
∴ ,,
∴ ,
又∵ 為中點,
∴ ,
∴ ,
∵∠AGE=∠GAD+∠ADE,
∴ ,
又∵ ,
∴ ,
.
()連接,由()知:=,
在中,,,
∴ ,
∵ ,
∴ ,
∵ 是中點,是中點,
∴ .
科目:初中數(shù)學 來源: 題型:
【題目】已知正比例函數(shù)y=kx經(jīng)過點A,點A在第四象限,過點A作AH⊥x軸,垂足為點H,點A的橫坐標為3,且△AOH的面積為3.
(1)求正比例函數(shù)的解析式;
(2)在x軸上能否找到一點P,使△AOP的面積為5?若存在,求點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點O為原點,點A的坐標為(﹣6,0).如圖1,正方形OBCD的頂點B在x軸的負半軸上,點C在第二象限.現(xiàn)將正方形OBCD繞點O順時針旋轉(zhuǎn)角α得到正方形OEFG.
(1)如圖2,若α=60°,OE=OA,求直線EF的函數(shù)表達式.
(2)若α為銳角,tanα= ,當AE取得最小值時,求正方形OEFG的面積.
(3)當正方形OEFG的頂點F落在y軸上時,直線AE與直線FG相交于點P,△OEP的其中兩邊之比能否為 :1?若能,求點P的坐標;若不能,試說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點,BE交AC于點F,連接DF.
(1)求證:∠BAC=∠DAC,∠AFD=∠CFE;
(2)若AB∥CD,試證明四邊形ABCD是菱形;
(3)在(2)的條件下,試確定E點的位置,使∠EFD=∠BCD,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系上有點 ,點 第一次跳動至帶你,第二次點跳動至帶你,第三次點跳動至帶你,第四次點跳動至帶你,…… 依此規(guī)律跳動下去,則點與點之間的距離是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的面積為24,點D在線段AC上,點F在線段BC的延長線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積為( )
A. 3 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.
(1)求證:DE是⊙O的切線.
(2)求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1∥l2∥l3 , 一等腰直角三角形ABC的三個頂點A,B,C分別在l1 , l2 , l3上,∠ACB=90°,AC交l2于點D,已知l1與l2的距離為1,l2與l3的距離為3,則 的值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com