【題目】如圖,已知ABC的面積為24,點D在線段AC上,點F在線段BC的延長線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積為(

A. 3 B. 4 C. 6 D. 8

【答案】A

【解析】試題分析:連接EC,過AAM∥BCFE的延長線于M,

四邊形CDEF是平行四邊形,

∴DE∥CF,EF∥CD,

∴AM∥DE∥CF,AC∥FM,

四邊形ACFM是平行四邊形,

∵△BDEDE上的高和△CDE的邊DE上的高相同,

∴△BDE的面積和△CDE的面積相等,

同理△ADE的面積和△AME的面積相等,

即陰影部分的面積等于平行四邊形ACFM的面積的一半,是×CF×hCF,

∵△ABC的面積是24,BC=4CF

BC×hBC=×4CF×hCF=24,

∴CF×hCF=12,

陰影部分的面積是××12=3

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,點G是BC延長線上一點,連接AG,分別交BD、CD于點E、F,連接CE.
(1)求證:∠DAE=∠DCE;
(2)當AE=2EF時,判斷FG與EF有何等量關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,是真命題的是(

①面積相等的兩個直角三角形全等;

②對角線互相垂直的四邊形是正方形;

③將拋物線 向左平移4個單位,再向上平移1個單位可得到拋物線 ;

④兩圓的半徑R、r分別是方程x2-3x+2=0 的兩根,且圓心距d=3, 則兩圓外切.

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,CDAB,垂足為D,如果CD=12,AD=16,BD=9,那么△ABC是直角三角形嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是矩形,點在線段的延長線上,連接于點,,點的中點.

)求證:

)若,,,點的中點,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為深化義務(wù)教育課程改革,某校積極開展拓展性課程建設(shè),計劃開設(shè)藝術(shù)、體育、勞技、文學(xué)等多個類別的拓展性課程,要求每一位學(xué)生都自主選擇一個類別的拓展性課程.為了了解學(xué)生選擇拓展性課程的情況,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖(部分信息未給出):
根據(jù)統(tǒng)計圖中的信息,解答下列問題:
(1)求本次被調(diào)查的學(xué)生人數(shù).
(2)將條形統(tǒng)計圖補充完整.
(3)若該校共有1600名學(xué)生,請估計全校選擇體育類的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC與CDE都是等邊三角形,點E、F分別為AC、BC的中點。

(1) 求證:四邊形EFCD是菱形;(2)如果AB=10,求D、F兩點間的距離。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某國發(fā)生8.1級強烈地震,我國積極組織搶險隊赴地震災(zāi)區(qū)參與搶險工作,如圖,某探測對在地面A、B兩處均探測出建筑物下方C處由生命跡象,已知探測線與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米,參考數(shù)據(jù):sin25°≈0.4,cos25°≈0,9,tan25°≈0.5, ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點EBC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結(jié)論中,不一定正確的是( 。

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

同步練習(xí)冊答案