【題目】已知在中,,,,點邊上的動點,點邊上的點,則的最小值為________

【答案】

【解析】

作點B關于AC的對稱點B′,過點B′作BDAB于點DAC于點PP點即為所求作的點,連接AB’,根據(jù)對稱點可知:BP=BP,即DP+PB的最小值為BP的長,本題求出BD的長度是解決本題的關鍵.

解:作點B關于AC的對稱點B′,過點B′作BDAB于點D,交AC于點P,點P即為所求作的點,此時DP+PB有最小值,連接AB′,根據(jù)對稱點可知:BP=BP

AB=13,AC=12,BC=5

AB2=AC2+BC2,

∴∠ACB=90°

AC=AC,∠ACB=ACB=90°,BC=CB

∴△ABC≌△ABCSAS),

SABB′=SABC+SAB'C=2SABC,

SABB′=×AB×B'D,

×AB×B'D=2SABC

×13×B'D=2××5×12

B'D=,

DP+PB=DP+B'D=

故答案為:.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】“萬州古紅桔”原名“萬縣紅桔”,古稱丹桔(以下簡稱為紅桔),種植距今至少已有一千多年的歷史,“玫瑰香橙”(源自意大利西西里島塔羅科血橙,以下簡稱香橙)現(xiàn)已是萬州柑橘發(fā)展的主推品種之一.某水果店老板在2017年11月份用15200元購進了400千克紅桔和600千克香橙,已知香橙的每千克進價比紅桔的每千克進價2倍還多4元.

(1)求11月份這兩種水果的進價分別為每千克多少元?

(2)時下正值柑橘銷售旺季,水果店老板決定在12月份繼續(xù)購進這兩種水果,但進入12月份,由于柑橘的大量上市,紅桔和香橙的進價都有大幅下滑,紅桔每千克的進價在11月份的基礎上下降了m%,香橙每千克的進價在11月份的基礎上下降了m%,由于紅桔和“玫瑰香橙”都深受庫區(qū)人民歡迎,實際水果店老板在12月份購進的紅桔數(shù)量比11月份增加了m%,香橙購進的數(shù)量比11月份增加了2m%,結果12月份所購進的這兩種柑橘的總價與11月份所購進的這兩種柑橘的總價相同,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】速度分別為100km/hakm/h0a100)的兩車分別從相距s千米的兩地同時出發(fā),沿同一方向勻速前行.行駛一段時間后,其中一車按原速度原路返回,直到與另一車相遇時兩車停止.在此過程中,兩車之間的距離ykm)與行駛時間th)之間的函數(shù)關系如圖所示.下列說法:①a60;②b2;③cb+;④若s60,則b.其中說法正確的是( 。

A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某烤鴨店在確定烤鴨的烤制時間時,主要依據(jù)的是下表的數(shù)據(jù):

鴨的質(zhì)量/千克

0.5

1

1.5

2

2.5

3

3.5

4

烤制時間/

40

60

80

100

120

140

160

180

設鴨的質(zhì)量為千克,烤制時間為,估計當千克時,的值為(

A.138B.140C.148D.160

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AGBC于點G,AFDE于點F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國古代有著輝煌的數(shù)學成就,《周髀算經(jīng)》、《九章算術》、《海島算經(jīng)》、《孫子算經(jīng)》等是我國古代數(shù)學的重要文獻.

1)小明想從這4部數(shù)學名著中隨機選擇1部閱讀,則他選中《九章算術》的概率為________;

2)某中學擬從這4部數(shù)學名著中選擇2部作為數(shù)學文化校本課程學習內(nèi)容,用樹狀圖或列表法求恰好選中《九章算術》和《孫子算經(jīng)》的概率.(設《周髀算經(jīng)》為,《九章算術》為,《海島算經(jīng)》為,《孫子算經(jīng)》為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx2a≠0)與x軸交于A、B兩點,與y軸交于C點,直線BD交拋物線于點D,并且D2,3),tanDBA=

1)求拋物線的解析式;

2)已知點M為拋物線上一動點,且在第三象限,順次連接點B、MC、A,求四邊形BMCA面積的最大值;

3)在(2)中四邊形BMCA面積最大的條件下,過點M作直線平行于y軸,在這條直線上是否存在一個以Q點為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在菱形ABCD中,AC=2,BD=2 3 ,AC,BD相交于點O.

(1)求邊AB的長;

(2)如圖2,將一個足夠大的直角三角板60°角的頂點放在菱形ABCD的頂點A處,繞點A左右旋轉,其中三角板60°角的兩邊分別與邊BC,CD相交于點E,F(xiàn),連接EF與AC相交于點G.

判斷AEF是哪一種特殊三角形,并說明理由;

旋轉過程中,當點E為邊BC的四等分點時(BE>CE),求CG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABE、ADCABC分別是關于ABAC邊所在直線的軸對稱圖形,若∠1:∠2:∠3=721,則∠α的度數(shù)為(  。

A.126°B.110°C.108°D.90°

查看答案和解析>>

同步練習冊答案